

TECHNICAL REPORT AND MINERAL RESOURCE ESTIMATE MPD PROJECT BRITISH COLUMBIA, CANADA

Prepared For:

Kodiak Copper Corp. 800 West Pender St, Suite 1020 Vancouver BC V6C 2V6 Canada

Qualified Persons:

Alfonso Rodriguez, M.Sc., P.Geo. (APEX Geoscience Ltd.) James N. Gray, P.Geo. (Advantage Geoservices Ltd.) Shane Tad Crowie, P.Eng. (JDS Energy & Mining Inc.)

Effective Date: June 25, 2025 **Signing Date:** August 9, 2025

Report Issued By

APEX Geoscience

Head Office 100-11450 160 ST NW Edmonton AB T5M 3Y7 Canada +1 780-467-3532

Perth Office 9/18 Parry ST Fremantle WA 6160 Australia +08 9221 6200 Vancouver Office 410-800 W Pender ST Vancouver BC V6C 2V6 Canada +1 604-290-3753

EGBC Permit to Practice #1003016 APEGA Permit to Practice #48439

In Collaboration With

Advantage Geoservices Ltd. 12771-261 Street Maple Ridge, BC,V2W 1C3 Canada JDS Energy & Mining Inc. 900-999 West Hastings Street Vancouver, BC, V6C 2W2 Canada

Contributing Authors and Qualified Persons

Coordinating Author and QP

Alfonso Rodriguez, M.Sc., P.Geo. APEX Geoscience

Signature and Seal on File

Contributing Authors and QPs

James N. Gray, P.Geo. Shane Tad Crowie, P.Eng. Advantage Geoservices Ltd. JDS Energy & Mining Inc.

Signature and Seal on File Signature and Seal on File

Effective and Signing Date

Effective Date June 25, 2025 **Signing Date** August 9, 2025

Contents

1	Summary	
	1.1 Issuer and Purpose	1
	1.2 Authors and Site Inspection	1
	1.3 Property Location, Description, and Access	2
	1.4 Geology and Mineralization	2
	1.5 Historical Exploration	3
	1.6 2019-2024 Exploration	4
	1.7 Mineral Processing and Metallurgical Testing	5
	1.8 Mineral Resource Estimate	6
	1.9 Conclusions and Recommendations	7
2	Introduction	9
	2.1 Issuer and Purpose	9
	2.2 Authors and Site Inspection	
	2.3 Sources of Information	
	2.4 Units of Measure	
3	Reliance on Other Experts	14
4	Property Description and Location	
	4.1 Description and Location	
	4.2 Royalties and Agreements	
	4.2.1 Man, Prime, Dillard (MPD) claims	
	4.2.2 Axe claims	
	4.2.3 Don Rippon claims	
	4.2.4 Aspen Grove claims	
	4.2.5 Delorme claims	
	4.3 Environmental Liabilities, Permitting and Significant Factors	25
	4.4 First Nations Agreements	
5	Accessibility, Climate, Local Resources, Infrastructure, and Physiography	
	5.1 Accessibility	
	5.2 Site Topography, Elevation and Vegetation	
	5.3 Climate	
	5.4 Local Resources and Infrastructure	
6	History	29
	6.1 Historical Ownership and Exploration	
	6.1.1 Man, Prime, and Dillard Claims	
	6.1.2 Axe	
	6.1.3 Aspen Grove	
	6.1.3.1 Property Scale	
	6.1.3.2 Par Area	44
	6.1.3.3 Ketchan Lake Area	
	6.1.3.4 Coke Area	
	6.1.3.5 Zig, Thalia, Thor	
	6.2 Historical Mining	4/

	6.3 Historical Mineral Resource Estimates	4/
7	Geological Setting and Mineralization	48
	7.1 Regional Geology	48
	7.2 Property Geology	50
	7.2.1 Structural Geology	54
	7.3 Mineralization	54
	7.3.1.1 Gate Zone	54
	7.3.1.2 Man Zone	
	7.3.1.3 Dillard Zone	
	7.3.1.4 Ketchan Lake Zone	
	7.3.1.5 West Zone	
	7.3.1.6 South Zone7.3.1.7 Adit Zone	
8	Deposit Types	
9	Exploration	
,	9.1 Soil Sampling	
	9.2 Rock Sampling	
	9.2.1 2019 Rock Sampling	
	9.2.2 2020 Rock Sampling	
	9.2.3 2021 Rock Sampling	
	9.2.4 2022 Rock Sampling	
	9.2.5 2023 Rock Sampling	
	·	
	9.2.6 2024 Rock Sampling	
	9.3 Induced Polarization and Magnetotelluric Survey	
	9.3.1 2021 IP Survey	
	9.3.2 2022 IP Survey	
	9.3.3 2023 IP Survey	
	9.3.4 2024 IP Survey	
	9.4 Airborne Electromagnetic and Aeromagnetic Survey	
	9.5 VRIFY Artificial Intelligence Prospectivity Review	
10	Drilling	
	10.1 Historical Drilling Summary	
	10.1.1 Man, Prime and Dillard Historical Drilling	
	10.1.2 Axe Historical Drilling	
	10.1.3 Aspen Grove Drilling	
	10.2 2019-2024 Kodiak Drilling Summary	
	10.2.1 2019 Diamond Drilling	
	10.2.2 2020 Diamond Drilling	127
	10.2.3 2021 Diamond Drilling	128
	10.2.4 2022 Diamond Drilling	130
	10.2.5 2023 Diamond Drilling	131
	10.2.6 2024 Diamond Drilling	133
11	Sample Preparation, Analyses and Security	136
	11.1 Historical Drill Hole Samples	
	11.1.1 1988-1989 Brican Resources Ltd. Diamond Drill Program	136

	11.1.2 1991 Fairfield Minerals Ltd. Diamond Drill Program	136
	11.1.3 1991-1992 Cominco Ltd. Percussion Drill Program	136
	11.1.4 2005-2007 Copper Belt Resources Ltd. Diamond Drill Program	136
	11.1.5 2007-2010 Candorado Operating Company Diamond Drill Program	137
	11.1.6 2013 Sunrise Resources Ltd. Diamond Drill Program	137
	11.1.7 2013-2014 Fjordland Exploration Inc. Diamond Drill Program	138
	11.1.8 2015-2016 KZD Aspen Grove Holding Ltd. Diamond Drill Program	138
	11.2 2019 – 2024 Kodiak Exploration Programs	139
	11.2.1 Sample Preparation	139
	11.2.1.1 Diamond Drill Core Processing and Sampling	139
	11.2.1.2 Surface Rock and Trench Sampling	
	11.2.1.3 Soil Sampling	
	11.2.2 Sample Analyses and Assays	
	11.2.2.1 Diamond Drill Core, Rock and Trench Samples	
	11.2.2.2 Soil Samples	
	11.2.3 Quality Assurance and Quality Control Program	
	11.2.3.1 Diamond Drill Core QA/QC	
	11.2.3.2 Surface Rock and Trench Sampling QA/QC	
	11.3 Adequacy of Sample Collection, Preparation, Security and Analytical Procedures	
40		
12	Data Verification	
	12.1 Data Verification Procedures	
	12.1.1 Drillhole Database	
	12.1.2 Exploration Data	
	12.2 Qualified Person Site Inspection	
	12.3 Validation Limitations	
	12.4 Adequacy of the Data	
13	Mineral Processing and Metallurgical Testing	
	13.1 Sample Selection	
	13.2 Sample Characterization	
	13.3 4 Flotation Testwork	
	13.4 Recommendations	
	13.4.1 Rougher Recovery	
	13.4.2 Cleaner Recovery	
	13.5 Metallurgical Assumptions	165
14	Mineral Resource Estimates	168
	14.1 Available Drill Data	168
	14.2 Block Model Setups	170
	14.3 Geologic Models	171
	14.4 Assay Capping	172
	14.5 Assay Compositing	177
	14.6 Variography	182
	14.7 Grade Interpolation	183
	14.8 Density Assignment	185
	14.9 Model Validation	

	14.10 Resource Classification	189
	14.11 Reasonable Prospects of Eventual Economic Extraction	189
	14.12 Mineral Resource Statement	190
23	Adjacent Properties	192
	23.1 Copper Mountain	192
	23.2 Highland Valley	195
	23.3 New Afton	196
	23.4 Neighboring Claims	197
24	Other Relevant Data and Information	198
25	Interpretation and Conclusions	199
	25.1 Geology and Mineralization	199
	25.2 Historical Exploration	199
	25.3 Recent Exploration	200
	25.4 Mineral Resource Estimate	201
	25.5 Conclusions	202
	25.6 Risks and Uncertainties	203
26	Recommendations	204
27	References	206
28	Certificate of Authors	212
	28.1 Alfonso Rodriguez Certificate of Author	212
	28.2 James N. Gray Certificate of Author	
	28.3 Shane Tad Crowie Certificate of Author	

Tables

Table 1-1 Statement of Mineral Resource Estimate at 0.2 % CuEq Cut-off for the Gate, Zones	
Table 1-2 Follow-up exploration recommendations.	7
Table 2-1 Qualified Persons and division of responsibilities	11
Table 2-2 List of Abbreviations and Units of Measure	12
Table 4-1 MPD Project Mineral Claims	15
Table 6-1 Man, Prime, and Dillard Historical Exploration Summary	29
Table 9-1 2019 Historical Trench Re-Sampling	71
Table 9-2 Man Zone Historical Trench 2 - Kodiak Resampling Assay Highlights	71
Table 9-3 Man Zone Historical Trench 3 - Resampling Assay Highlights	72
Table 9-4 2019 Rock Sample Assay Highlights	73
Table 9-5 2020 Rock Sample Assay Highlights	73
Table 9-6 2021 Rock Assay Highlights	75
Table 9-7 2022 Trench Results Highlights	76
Table 9-8 2022 Rock Assay Highlights	77
Table 9-9 2023 Rock Sample Assay Highlights	78
Table 9-10 2024 Prospecting Result Highlights	79
Table 10-1 Historical Drilling Summary	87
Table 10-2 MPD Historical Drillhole Locations	91
Table 10-3 Pageant Mines Ltd. and Primer Group Minerals Ltd. 1966-1969 Diamond Intercepts	
Table 10-4 Brican Resources Ltd. 1989 Diamond Drilling Significant Intercepts	96
Table 10-5 Fairfield Minerals Ltd. 1991 Diamond Drilling Significant Intercepts	97
Table 10-6 Candorado-GWR Resources 2007-2010 Drilling Significant Intercepts	97
Table 10-7 Sunrise Resources 2013 Drilling Significant Intercepts	98
Table 10-8 Fjordland 2013-2014 Drilling Significant Intercepts	99
Table 10-9 Axe Historical Drill hole Locations	99
Table 10-10 Meridian 1967 Drilling Significant Intercepts	106
Table 10-11 1969-1973 Adonis Mines and AMAX Drilling Significant Intercepts	106
Table 10-12 2004-2009 Bearclaw and Weststar Drilling Significant Intercepts	108
Table 10-13 2018 Evrim Drilling Significant Intercepts	108
Table 10-14 Aspen Grove Historic Drillhole Locations	109
Table 10-15 1991-1992 Cominco Drilling Significant Intercepts	115
Table 10-16 2005-2007 Copper Belt and Midland Drilling Significant Intercepts	115
Table 10-17 2015-2016 Kaizen Drilling Significant Intercepts	116
Table 10-18 2019-2024 Kodiak drilling at the Property	117
Table 10-19 2019 significant assay results intercepts Property	
Table 10-20 2020 significant assay results intercepts Property	127
Table 10-21 2021 significant assay results intercepts - Gate and Dillard Zones	128
Table 10-22 2022 Significant Assay Intercepts - Gate, Prime and Dillard Zones	130

Table 10-23 2023 Significant Assay Intercepts - Axe and MPD Claim Blocks	132
Table 10-24 2024 Significant Assay Intercepts - Axe and MPD Claim Blocks	134
Table 11-1 2019-2024 Drill Program QA/QC Sample Insertion Rates	142
Table 11-2 Additional 2024 QA/QC CDN-ME-2314 Au and Cu standard	145
Table 11-3 2010 to 2024 QA/QC rock sampling other standards for gold and copper	147
Table 11-4 2019 - 2024 soil sampling QA/QC insertion rates	149
Table 12-1 2025 QP site visit sample locations, descriptions, and geochemical results	155
Table 13-1 Sample Selection Estimated Grades	158
Table 13-2 Sample Composite Assayed Grades	159
Table 13-3 Copper Deportment	159
Table 13-4 Copper Mineral Grain Size	159
Table 13-5 Chalcopyrite Liberation Rougher Feed Samples and MPD North High Grade Tails	161
Table 13-6 Sample Feed Grade, Rougher Recovery and Max Concentrate Grade	162
Table 13-7 Mineral Deportment of Selected Cleaner Tailings Streams	162
Table 13-8 Chalcopyrite Liberation for Selected Cleaner Tailings Streams	163
Table 13-9 Table of Predictions Used	167
Table 14-1 Drill Data Used for Mineral Resource Estimate: Reliability Index	168
Table 14-2 Drill Data Used for Mineral Resource Estimate: Drill Year	169
Table 14-3 Block Model Setup Summary	171
Table 14-4 Assay Capping Levels	173
Table 14-5 Gate Deposit - Uncapped and Capped Assay Statistics	173
Table 14-6 Man Deposit - Uncapped and Capped Assay Statistics	174
Table 14-7 Dillard Deposit - Uncapped and Capped Assay Statistics	175
Table 14-8 Ketchan Deposit - Uncapped and Capped Assay Statistics	176
Table 14-9 Gate Deposit - Uncapped and Capped Composite Statistics	178
Table 14-10 Man Deposit - Uncapped and Capped Composite Statistics	179
Table 14-11 Dillard Deposit - Uncapped and Capped Composite Statistics	180
Table 14-12 Ketchan Deposit - Uncapped and Capped Composite Statistics	181
Table 14-13 Copper Variogram Models - Gate	182
Table 14-14 Gold Variogram Models - Gate	182
Table 14-15 Silver Variogram Models - Gate	182
Table 14-16 Geologic Contact Relationships for Grade Estimation	184
Table 14-17 Grade Estimation Parameters	185
Table 14-18 Density Measurements by Project Area	185
Table 14-19 Pit Optimization Parameters	
Table 14-20 Statement of Mineral Resource Estimate at 0.2 % CuEq Cut-off for the Gate, Man, Di Ketchan Zones	
Table 14-21 Cut-off Grade Sensitivity Summary	
Table 23-2 Copper Mountain Mineral Reserve Estimate as of January 1, 2025	192
Table 23-3 Copper Mountain Mineral Resource Estimate as of January 1, 2025	195
Table 23-1 Highland Valley Copper Mineral Reserve Estimate as of December 31, 2024	195
Table 23-4 New Afton Mineral Reserve Estimate as of December 31, 2024	196

Table 23-5 New Afton Mineral Resource Estimate as of December 31, 2024	196
Table 25-1 Statement of Mineral Resource Estimate at 0.2 % CuEq Cut-off for the Gate, Man, Dillard Ketchan Zones	
Table 26-1 Follow-up exploration recommendations	. 204
Figures	
Figure 2.1 General location of the MPD Project	10
Figure 4.1 MPD Project Mineral Claims	20
Figure 4.2 Purchase agreements	
Figure 4.3 Net Smelter Royalty (NSR) Agreements.	23
Figure 6.1 Man, Prime, and Dillard Historical Soil Geochemistry (Cu)	
Figure 6.2 Man, Prime, and Dillard Historical Soil Geochemistry (Au)	33
Figure 6.3 Man, Prime, and Dillard Historical Drill Hole Locations and Drill Traces	34
Figure 6.4 Axe Property Historical Soil Geochemistry (Cu)	38
Figure 6.5 Axe Property Historical Soil Geochemistry (Au)	
Figure 6.6 Axe Property Historical Drill Collar Locations and Drill Traces	40
Figure 6.7 Aspen Grove Property Historical Drill Collar Locations and Drill Traces	
Figure 7.1 Regional geology of the MPD Project	
Figure 7.2 Property Geology	51
Figure 9.1 2019 - 2024 Soil sampling survey locations	60
Figure 9.2 2019 - 2024 Soil sampling surveys Cu (ppm) results - MPD Claims	61
Figure 9.3 2019 - 2024 Soil sampling surveys Au (ppm) results - MPD Claims	62
Figure 9.4 2019 - 2024 Soil sampling surveys Cu (ppm) results - Axe Claims	63
Figure 9.5 2019 - 2024 Soil sampling surveys Au (ppm) results - Axe Claims	64
Figure 9.6 2019 - 2024 Soil sampling surveys Cu (ppm) results - Aspen Grove Claims	65
Figure 9.7 2019 - 2024 Soil sampling surveys Au (ppm) results - Aspen Grove Claims	66
Figure 9.8 2019 - 2024 Rock sampling results Cu (%)	
Figure 9.9 2019 - 2024 Rock sampling results Au (ppm)	69
Figure 9.10 2019 – 2024 Trench locations	70
Figure 9.11 Combined IP Surveys 2021, 2022, 2023 and 2024. Chargeability at 200 m Depth	81
Figure 9.12 Combined IP Surveys 2021, 2022, 2023 and 2024. Resistivity at 200 m Depth	82
Figure 9.13 2020 ZTEM Survey - Total Magnetic Intensity	85
Figure 10.1 Historical Drill Hole Locations - MPD Claims	88
Figure 10.2 Historical Drill Hole Locations - Axe Claims	
Figure 10.3 Historical Drill Hole Locations -Aspen Grove Claims	90
Figure 10.4 Historical Drilling – Aspen Grove, Ketchan	. 114
Figure 10.5 2019 – 2024 Kodiak Drilling – MPD Claims	
Figure 10.6 2023 – 2024 Kodiak Drilling – Axe Claims	
Figure 10.7 North-northeast Vertical Cross section looking West - 2019-2023 Gate and Man drilling Figure 10.8 Northwest Vertical Cross Section Looking Northeast - 2019-2023 Gate and Dillard drilling	

Figure 10.9 Northwest Vertical Cross Section Looking Northeast - 2023-2024 Axe drilling	125
Figure 11.1 2019 - 2022 Drilling QA/QC Standard CDN-CM-37, CDN-CM-18, CDN-CM-1409 gold at	
assays	
Figure 11.2 Blanks between 2019 and 2024 drilling QA/QC for gold and copper, for Mountain ma	
(MMB), Mountain magic red (MMR), EJW blank, and Certified SiO ₂ blank	
Figure 11.3 Drilling Field Duplicates	
Figure 11.4 2019 to 2024 rock sampling QA/QC CDN-CM-18 standards	
Figure 11.5 2020 - 2022 rock and trench sampling QA/QC Blanks. Assays for copper and gold	
Figure 11.6 2021 to 2024 soil sampling QA/QC CND-GEO-1901 standard	
Figure 11.7 2019-2024 soil sampling QA/QC coarse blank	150
Figure 11.8 2019-2024 soil sampling QA/QC duplicates	150
Figure 12.1 2025 QP site visit sample locations	153
Figure 12.2 2025 QP site visit sample locations. A. Core processing facility (Merrit, BC). B. MPD2 MPD24-001 Drill site. D. Trench at Man zone, sample 25ARP002. E. Sample site 25ARP001, trench hole MPD21-003. F. Core drilling site (Axe zone). G. Drill hole MPD21-016 at 602.50m. Center line q cross-cut by chalcopyrite veinlet. H. Drill hole MPD21-016 at 588.20 m. Chalcopyrite veinlets, part of 25ARM001. I. Drill hole MDP22-010 at 618.30 m. Potassic alteration	n near drill uartz vein of sample
Figure 13.1 Map of Preliminary Conceptual Pit Shells	158
Figure 13.2 MPD North Low Grade Rougher Flotation Recovery	160
Figure 13.3 MPD North High Grade Rougher Flotation Recovery	160
Figure 13.4 MPD South Rougher Flotation Recovery	161
Figure 13.5 Gold Recovery Prediction vs Feed Grade	165
Figure 13.6 Copper Recovery Prediction vs Feed Grade	166
Figure 13.7 Silver Recovery Prediction vs Feed Grade	166
Figure 14.1 Available Drilling and Limits of Resource Models	170
Figure 14.2 Example Sections - Copper Composites and Block Grades at Gate and Ketchan	187
Figure 14.3 Example Copper Model Swath Plots – Gate	188
Figure 14.4 Example Sections - Resource Classification	189
Figure 23.1 Copper- Gold Porphyry Mines in the Vicinity	193
Figure 23.2 Adjacent Properties to MPD	194

1 Summary

1.1 Issuer and Purpose

This Technical Report (the "Report") and Initial Mineral Resource Estimate for the MPD Project ("MPD Project", the "Project" or the "Property") has been prepared by APEX Geoscience Ltd. ("APEX"), Advantage Geoservices Ltd. (Advantage Geoservices") and JDS Energy & Mining Inc. ("JDS") for the Issuer, Kodiak Copper Corp. ("Kodiak" or the "Company"). Kodiak is a Vancouver, Canada based junior mineral exploration company focused on acquiring, exploring, and developing interests in copper projects in Canada and the USA.

The MPD Project comprises 108 mineral claims covering a total area of approximately 344 km² (34,430 hectares). The Project is located within the Okanagan-Similkameen and the Thompson-Nicola Regional Districts. In 2018, Kodiak (formerly Dunnedin Ventures Inc.) signed a Purchase Agreement with a private vendor to acquire a 100 per cent (%) interest in the 28 mineral claims forming the core of the MPD Project. Between 2021 and 2025, Kodiak finalised an additional four purchase agreements to acquire the claims adjacent to and surrounding the original MPD claim block to consolidate the current Project area. Portions of the Project are subject to net smelter returns royalty agreements ranging from 0.3% to 2%.

This Report summarizes a NI 43-10 Standards of Disclosure for Mineral Projects Initial Mineral Resource Estimate (MRE) for the Project and provides a technical summary of the relevant location, tenure, historical exploration, and geological information, and recommendations for future exploration programs. This Report summarizes the technical information available up to the Effective Date of June 25th, 2025.

This Report was prepared by Qualified Persons (QPs) in accordance with disclosure and reporting requirements set forth in the NI 43-101 Standards of Disclosure for Mineral Projects (effective May 9, 2016), Companion Policy 43-101CP Standards of Disclosure for Mineral Projects (effective February 25, 2016), Form 43-101F1 (effective June 30, 2011) of the British Columbia Securities Administrators, the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Mineral Exploration Best Practice Guidelines (November 23, 2018), the CIM Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines (November 29, 2019) and the CIM Definition Standards (May 10, 2014).

1.2 Authors and Site Inspection

The authors of this Technical Report (the "Authors") are Mr. Alfonso Rodriguez M.Sc., P. Geo. of APEX, Mr. James N. Gray, B.Sc., P.Geo. of Advantage Geoservices and Mr. Shane Tad Crowie P.Eng., of JDS. The Authors are fully independent of Kodiak and are QPs as defined in NI 43-101.

Mr. Rodriguez takes responsibility for the preparation and publication of sections 1.1 to 1.6, 1.9, 2 to 11, 12.1.2, 12.2-12.4, 23 to 24, 25.1 to 25.3, 25.5, 25.6, 26 to 27, 28.1 of this Technical Report. Mr. Rodriguez is a registered Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia (EGBC). Mr. Gray takes responsibility for Sections 1.8, 12.1.1, 14, 25.4 and 28.2 of this Technical Report and is a registered Professional Geoscientist with EGBC. Mr. Crowie takes responsibility for Sections 1.7, 13 and 28.3 of this Technical Report and is a registered Professional Engineer with EGBC.

Mr. Rodriguez visited the Project from June 23 to 24, 2025. Inspections were conducted to assess the current site conditions and access, as well as the Project geology, alteration, and mineralization, and to collect independent verification samples from drill holes and historical showing and trenches. Observations and results from Mr. Rodriguez's site visit and core sampling verify the presence of Cu mineralization at the

Project. Rock types and mineralization observed in the drill core are consistent with the reported geology and historical exploration results.

Mr. Gray and Mr. Crowie did not visit the Project, as Mr. Rodriguez's site inspection was deemed sufficient by the QPs.

1.3 Property Location, Description, and Access

The MPD Project is located in south-central British Columbia, approximately 25 kilometres (km) southeast of Merritt and approximately 10 km north of Princeton, within the Similkameen and Nicola Mining Divisions. The approximate centre of the main mineral occurrence within the Project, called the 'Gate' Zone, is located at Universal Transverse Mercator ("UTM") NAD83, Zone 10 Easting 681430 m, Northing 5515700 m (49° 45′ 59" N lat / -120° 28′ 50" W long).

The Project is accessible by vehicle via multiple routes from Merritt or Princeton along Highway 5A or 97C. An extensive network of Forest Service Roads covers the Project, and all areas are easily accessible by truck or all-terrain vehicles on non-serviced roads. Based on the location, access, and climate, exploration and mining work on the Project can be conducted year-round, although freeze/thaw transitions and snowfall during spring and fall months may limit access for short periods of time.

1.4 Geology and Mineralization

The MPD Project is located in the Quesnel Terrane of British Columbia's Intermontane Belt. This terrane extends from the Canadian border to north of Kamloops and is dominated by alkalic and calc-alkalic islandarc volcanics and co-magmatic intrusives of the Late Triassic-Early Jurassic Nicola Group. Regionally, the geology has been divided into three belts—Western, Central, and Eastern—separated by major fault systems, which played a critical role in the emplacement of volcanic and intrusive rocks. Southern British Columbia is known to host large, low-grade copper-gold-molybdenum porphyry deposits hosted within these three belts.

At the Project scale, the geology is dominated by volcanic and sedimentary rocks of the Nicola Group, specifically the Iron Mountain and Elkhart formations. These are overlain or intruded by multiple intrusive suites, including Jurassic intrusions of the Nelson Suite and others ranging from Late Triassic to Early Cretaceous in age. Late Triassic porphyritic monzonite and diorite intrusions are strongly associated with copper-gold mineralization and display classic porphyry-style alteration patterns.

The structural setting of the Project is complex, shaped by multiple tectonic episodes. Pre-, syn-, and post-mineralization faults cut through the area, reflecting at least three major deformation events. Fault zones such as the Summers Creek and Allison systems have provided conduits for intrusions and hydrothermal fluids, controlling the location and geometry of mineralized zones.

A total of 54 mineral occurrences are documented on the Project. To date, exploration and drilling have been largely focused on seven main zones: Gate, Man, Dillard, Ketchan, West, South and Adit.

The Gate Zone (formerly known as the Gate-Prime Zone) is characterized by a two-phase porphyry system with high-grade mineralization concentrated at the contacts between the intrusive phases. Copper occurs mostly as chalcopyrite, with bornite in high-grade intervals, and is associated with potassic alteration and quartz stockworks. The historical Prime Zone is considered a northeast continuation of the Gate Zone system hosted in volcanics.

At the Man Zone, copper-gold mineralization is hosted in monzodiorite stock and volcanic rocks. Alteration includes strong potassic and phyllic assemblages, with chalcopyrite being the dominant copper-bearing mineral.

Copper and gold mineralization at Dillard is hosted within fine-grained andesitic to basaltic flows and fragmental volcanic units which are contemporaneous with sub-volcanic fine-grained diorite to granodiorite composition intrusions that can be described as dyke swarms. Alteration is dominated by propylitic and sericitic types, with some patchy potassic zones marking areas of higher copper content.

Ketchan Lake hosts mineralization within an alkaline intrusive complex made up of monzogabbro, diorite, and monzonite porphyries. A range of alteration types is present, including potassic, calcic, sodic, and phyllic assemblages reflecting overlapping magmatic and hydrothermal events. Copper and gold are mainly associated with potassic to calc-potassic alteration and hydrothermal to intrusive breccia zones.

In the West Zone, mineralization is hosted in Nicola volcanics and diorite porphyries. Alteration consists of calcic-potassic assemblages with epidote, magnetite, and actinolite closely associated with copper mineralization. The highest grades occur near the cores of diorite intrusions. A structurally controlled gold-bearing zone is also identified in the northern part.

Copper mineralization at the South Zone (formerly known as the South-Mid Zone) is associated with monzonite porphyry stocks and altered volcanic rocks. A simple alteration zonation is observed, from outer propylitic to inner potassic, with an increase in copper grades. The historical Mid Zone is considered a northern continuation of this system.

The Adit Zone features a two-phase diorite porphyry system and is notable for being the only area on the Project with a well-developed supergene enrichment zone. Copper oxides like malachite and azurite are found near surface. Remnants of potassic alteration overprinted by barren sericitic alteration characterizes the early porphyry phase. The late porphyry phase shows intrusive breccia textures and is characterized with chalcopyrite-molybdenite mineralization.

1.5 Historical Exploration

The current MPD Project is a consolidation of numerous historical properties. The original land package consisting of 28 mineral claims, acquired by Kodiak in late 2018, consolidated three historical prospect areas (Man, Prime and Dillard). Subsequently, four adjacent claim packages were acquired by Kodiak, including the neighbouring and contiguous Axe claim block in 2021and the Aspen Grove claim block in 2024. There has been no advanced development or production on the Project to date.

Many different companies have worked separate parts of the historical Man, Prime, and Dillard claims dating back to 1937, when claims were staked in the vicinity of the Prime Target. There are no records of exploration conducted between 1937 and 1961. Historical exploration across the current extent of the MPD Project has included geological mapping, surface sampling, trenching, drilling, and geophysical surveys by several companies from the early 1960s to 2018.

A total of 122 diamond drill holes and 26,345 metres were completed on the original MPD claim block by previous operators from 1965 to 2014. A total of 33 holes (DDH) were drilled between 1965 and 1969, with 12 DDH between 1979 and 1981, 8 DDH in 1988, 11 DDH from 1989 to 1991, 35 holes between 2007 and 2010, 2 DDH in 2013 and another 21 DDH from 2013 to 2014. Another 2 DDH completed in 1987 and 2 DDH in 1999 are excluded from the total, as their collar information cannot be confirmed. The historical drilling focused on the Man, Prime and Dillard mineralized zones.

Early exploration on the Axe claims dates to the 1920s. Work conducted between the 1920s and 1965 is not documented. Drilling at the historical Axe claims totaled 24,437 metres in 267 holes completed by previous operators between 1967 and 2018.

The Aspen Grove area has been prospected since around 1900 when discoveries of high-grade copper were made near Aspen Grove, about 7 kilometres north of the original MPD claims. A total of 129 holes and 22,643 metres were drilled at the historical Aspen Grove claims between 1962 and 2016.

1.6 2019-2024 Exploration

Kodiak conducted annual exploration programs at the MPD Project between 2019 and 2024. The exploration programs included diamond drilling, prospecting and surface sampling as well as geophysical surveying including airborne magnetics, electromagnetics, induced polarization and magnetotellurics.

The 2019 exploration program included the collection of 189 soil samples, 141 rock trench samples, and a total of 1,765 m of diamond drilling that were completed in three holes. Historical trench re-sampling at the Man Zone returned assays up to 3.08% copper. Drilling at the Prime Zone was designed to test the horizontal and vertical continuity of higher-grade copper-gold mineralization encountered in two historical holes. The hole at Man was drilled to evaluate property-scale zonation of the larger porphyry system in the area. All 3 holes intersected porphyry-style mineralization comprised of pyrite and minor chalcopyrite (+/- bornite). The last hole of the 2019 program intersected a new zone of copper-gold mineralization which was named the "Gate Zone". The new discovery underlies a broad 600 x 1,100 m historical copper-in-soil anomaly with over one kilometre of strike. Mineralization occurs in altered porphyritic andesite, diorite and/or monzonite, containing pyrite and chalcopyrite (with associated bornite below 500 m).

The 2020 exploration program consisted of 10 diamond drill holes totalling 6,842 m, a ZTEM and aeromagnetic geophysical survey totalling 440 line-km, and the collection of 328 soil samples and 120 rock samples. The drilling traced the extent of copper-gold mineralization at the Gate Zone down to 800 m depth, across a width of 350 m (east-west) and over 100 m in length (north-south). Eight of the ten holes encountered copper mineralization; the remaining two holes were lost due to poor rock conditions. Drilling encountered anomalous copper-gold mineralization and altered porphyritic host rocks that display all the hallmarks of a well-developed alkalic porphyry system. The ZTEM survey results and 2D Inversions highlighted a number of linear features running NNE-SSW throughout the block, associated with magnetic lows.

In 2021, the exploration program included the collection of 1,581 soil samples and 181 rock and trench samples; a ground induced polarization (IP) and magnetotelluric (MT) geophysical survey which covered 19.7 line-km; and a total of 21,674 m of diamond drilling, Drilling included 34 holes at the Gate Zone and two holes at the Dillard Area. The Gate Zone mineralization was extended to over a strike length of approximately 1 km, up to a width of 350 m and a depth of greater than 850 m. 3D IP surveying over the Gate Zone identified a relationship between copper-gold mineralization and the distribution of conductive and/or chargeability responses, including what appear to be untested extensions of the zone to the south and east, as well as towards the historical Prime area.

The 2022 exploration program included the collection of 1,708 soil samples and 191 rock and trench samples; a ground induced polarization (3D IP) and magnetotelluric (MT) geophysical survey which covered 67.7 grid line km; and a total of 26,104 m of diamond drilling completed in 41 holes. Drilling continued to focus on expanding the copper-gold mineralization at the Gate Zone and testing the historical Prime and Dillard Zones at depth. Of the 41 holes drilled, 28 were completed in the Gate/Prime area, with several holes targeting nearby geophysical anomalies and 13 holes testing the Dillard Zone. The drilling extended the Gate Zone at depth and confirmed copper mineralization below shallow historical drilling at both the Prime and

Dillard Zones. At the Man Zone, coincident depth extensive resistivity and chargeability anomalies were identified below the historical trenching/drilling. The Dillard Zone is a large porphyry system, and the IP responses exhibited complex relationships with mineralization in the area. The small trenching program was completed over the Beyer and Dillard East targets. Gold mineralization at the Beyer target was identified in an intensely altered argillic zone. Samples returned gold assays up to 9.11 g/t Au. Trenching at Dillard East encountered a 085-degree trending mineralized structure in hornblende diorite intensely altered to clay and sericite.

The 2023 exploration program included the collection of 2,608 soil samples and 57 rock samples; a ground induced polarization (3D IP) and magnetotelluric (MT) geophysical survey which covered 29.6 grid line km; and a total of 18,562 m of diamond drilling completed in 33 holes. Drilling targeted the Man Zone (seven holes), the Beyer Zone (five holes), the West Zone (eleven holes), the South Zone (three holes) and 1516 Zone on the Axe claim block (seven holes). Drilling at Man extended copper-gold mineralization from surface down to 995 m depth and along 600 m of strike. Initial drill holes in the West and South Zones were successful in expanding previously known mineralization. Of the 33 holes, 11 were either lost due to drilling conditions, had no significant assay or were not assayed. The 2023 IP survey highlighted a broad chargeability anomaly from surface to 700 m depth at the Blue target. The anomaly is associated with a kilometre-scale copper-in soil anomaly identified in 2021 and prospecting samples with significant copper-gold-silver.

In 2024, the exploration program included the collection of 2,020 soil samples and 67 rock samples; a ground induced polarization (IP) and magnetotelluric (MT) geophysical survey which consisted of 108 grid line-km; and a total of 9,249 m of diamond drilling. The drilling program included 25 holes at seven target areas. The primary goal of the 2024 drill program was to drill new targets developed by Kodiak's exploration team and AI predictive modelling. The work also included further drilling to expand the near-surface mineralization envelopes within and adjacent to existing zones. The 2024 IP survey covered the Dillard East and Star target areas. The survey identified several large chargeability highs at both the Dillard East and Star target areas. A two-kilometre-long northeast trending chargeability high was identified that transects the large circular copper-in soil signatures characteristic of the Dillard East and Star targets.

1.7 Mineral Processing and Metallurgical Testing

In early 2025, a metallurgical testwork program was conducted to characterize the recovery potential of material from the MPD deposit. This was the first metallurgical testwork program completed on the Project. It was designed to provide a baseline of potential recovery and determine the focus on upcoming programs to optimize recovery and product grade.

Three composite samples were designed based on spatial positioning and to achieve a high, medium, and low-grade range to test for grade vs recovery relationships. The samples for the 3 composites were chosen from core that was less than 4 years old to prevent oxidation from affecting the flotation results. The individual sample intervals were packaged and shipped to Blue Coast research to conduct metallurgical testwork.

The mineralogical analysis determined that the copper mineralogy is primarily chalcopyrite with small amounts of bornite and chalcocite. The testwork program included a total of 24 flotation tests that included thirteen rougher only tests and eleven cleaner tests. The testwork results were used to determine the recovery relationships:

Rec Cu = 95.844*(Cu Feed Grade^0.117); Rec Au = 88.135*(Au Feed Grade^0.1819); and Rec Ag = 54.782*(Ag Feed Grade^0.3541).

1.8 Mineral Resource Estimate

An Initial Mineral Resource Estimate (MRE) has been prepared for four deposits on the MPD Project: Gate, Man, Dillard and Ketchan. The 2025 MRE is reported in accordance with the Canadian Securities Administrators' NI 43-101 rules for disclosure and has been estimated using the CIM "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" dated November 29, 2019, and CIM "Definition Standards for Mineral Resources and Mineral Reserves" dated May 10, 2014. The effective date of the Mineral Resource is June 25, 2025.

Mineral Resource modelling was conducted in the UTM coordinate system relative to the North American Datum (NAD) 1983 Zone 10N. Grades in the four project areas were estimated using separate block model frameworks. The Mineral Resource utilized a block model cell size of 10 m x10 m x10 m. Copper (Cu), Gold (Au) and Silver (Ag) grades were estimated for each block using ordinary kriging at Gate; the other three deposits were estimated by inverse distance cubed weighting (ID3).

Undiluted MRE tabulation is based on copper (Cu) equivalent cut-off grade (CuEq). CuEq is calculated as: CuEq (%) = Cu (%) + $Au(g/t) \times 0.6606 + Ag(g/t) \times 0.0069$. The reported open-pit resources utilize a cutoff of 0.2% CuEq. Reasonable prospects of eventual economic extraction were established by constraining the resource to optimized Lerchs-Grossmann conceptual pit shells at each area. All material included in the MRE is contained within the optimized pit shells.

The MRE comprises Indicated Mineral Resources of 56.4 million tonnes (Mt) grading 0.42% copper equivalent (CuEq) for 385 million pounds (Mlbs) of copper (Cu) and 0.25 million ounces (Moz) of gold (Au) and Inferred Mineral Resources of 240.7 million tonnes (Mt) grading 0.33% copper equivalent (CuEq) for 1,291 million pounds (Mlbs) of copper (Cu) and 0.96 million ounces (Moz) of gold (Au). Table 1-1 presents the complete 2025 MRE statement.

Table 1-1 Statement of Mineral Resource Estimate at 0.2 % CuEq Cut-off for the Gate, Man and Ketchan Zones

Project	Project Resource		Resource Tonnes Average Grade						Contained Metal			
Area	Category	(millions)	Cu (%)	Au (g/t)	Ag (g/t)	CuEq (%)	Cu (Mlbs)	Au (Mozs)	Ag (Mozs)	CuEq (Mlbs)		
Gate	Indicated	56.4	0.31	0.14	1.18	0.42	385	0.25	2.14	522		
Gate	Inferred	114.5	0.27	0.13	1.07	0.36	682	0.48	3.94	909		
Man	Inferred	8.3	0.17	0.30	0.56	0.37	31	0.08	0.15	68		
Dillard	Inferred	51.9	0.20	0.09	0.39	0.26	229	0.15	0.65	298		
Ketchan	Inferred	66.0	0.24	0.12	1.09	0.33	349	0.25	2.31	480		
Total Ir	ndicated	56.4	0.31	0.14	1.18	0.42	385	0.25	2.14	522		
Total Ir	nferred	240.7	0.24	0.12	0.91	0.33	1,291	0.96	7.05	1,754		

Notes: 1. The Mineral Resources were estimated using the Canadian Institute of Mining, Metallurgy and Petroleum (CIM), Definition Standards for Mineral Resources and Reserves, as prepared by the CIM Standing Committee and adopted by CIM Council.

2. A cut-off grade of 0.2% CuEq was applied to the MRE models within the conceptual pit shells.

3. Pit shell optimization used average recoveries derived from metallurgical test work of Cu 82%, Au 60% and Ag 54%, exchange rate of 1.35 CAD:USD, mining cost of C\$2.3/t, process cost of C\$8.5/t, and pit slope of 45 degrees.

4. Copper equivalence (CuEq) and constraining conceptual pit shells assume metal prices (US\$) of: \$4.2/lb copper, \$2,600/oz gold, \$30/oz silver.

^{5.} The copper equivalency equation used is: $CuEq(\%) = Cu(\%) + Au(g/t) \times 0.6606 + Ag(g/t) \times 0.0069$ 6. Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the mineral resources will be converted into mineral reserves in the future. The MRE may be materially affected by considerations including, but not limited to, permitting, legal, sociopolitical, environmental issues, market conditions or other factors.

^{7.} All figures are rounded to reflect the relative accuracy of the estimate. Totals may not sum due to rounding as required by reporting guidelines.

1.9 Conclusions and Recommendations

Historical and recent drilling have defined significant copper gold mineralization on the MPD Project. The current MRE encompasses only four of the seven mineralized zones on the Project and has identified a sizable copper-gold deposit. Mineralization remains open for expansion within and beyond the MRE conceptual pit shells, in multiple directions and at depth. Additionally, higher-grade, near surface mineralization has been identified at the West, Adit and South zones indicating that there is potential to expand the current MRE. There is also potential for new discoveries with further exploration drilling.

Follow-up exploration should include a Phase 1 program of geological mapping, prospecting and additional drilling at the West, Adit and South Zones, to provide sufficient data for resource definition work. A 5,000 m program of reverse circulation (RC) and core drilling is being conducted on the South, West and Adit zones as part of Kodiak's 2025 exploration program, with the aim of developing Mineral Resource Estimates for these three zones by year end.

Geological mapping and prospecting are planned for 2025 to follow up high priority targets and provide support for geological modeling on known zones. The target investigation work will be conducted on exploration targets and areas of interest identified by previous exploration programs, including areas identified using VRIFY Artificial Intelligence software.

The budget for the 2025 resource drilling and geological mapping field program is estimated to be \$3 million, including site preparation and reclamation, laboratory analyses, support costs, labour and environmental work.

In addition to the 2025 Phase 1 fieldwork, a Phase 2 program of metallurgical testwork and further drilling is recommended contingent upon the results of Phase 1. A program of follow-up metallurgical test work will be developed to build on the initial testing completed during the first half of 2025 and core drilling is recommended to expand known zones. The work program is estimated to cost \$5.6 million. (Table 1-2).

Table 1-2 Follow-up exploration recommendations.

Activity Type	Drill holes	Total (m)	Cost per m (all in)	Cost (CAD\$)
Phase 1				
Diamond Drilling: Infill, historical hole confirmation	15	1,500	\$500	\$750,000
Reverse Circulation Drilling: Infill, MRE Expansion	30	3,500	\$370	\$1,295,000
Geological Mapping and Prospecting				\$300,000
Desktop Review				\$150,000
Mineral Resource modeling and Technical Report				\$235,000
			Contingency	\$270,000
			Phase 1 Total Activities Subtotal	\$3,000,000
Phase 2				
Diamond Drilling Infill & MRE Expansion	30	7,000	\$450	\$3,150,000

Diamond Drilling Exploration	10	3,000	\$450	\$1,350,000
Additional Metallurgical Testwork				\$250,000
Desktop Review and Scoping Studies				\$200,000
Updated Technical Report				\$150,000
			Contingency	\$500,000
			Phase 2 Activities Subtotal	\$5,600,000
			Grand Total	\$8,600,000

2 Introduction

2.1 Issuer and Purpose

This Technical Report (the "Report") and initial Mineral Resource Estimate for the MPD Project ("MPD Project", "Project" or "Property") has been prepared by APEX Geoscience Ltd. ("APEX"), Advantage Geoservices Ltd. (Advantage Geoservices") and JDS Energy & Mining Inc. ("JDS") for the Issuer, Kodiak Copper Corp. ("Kodiak" or the "Company"; formerly Dunnedin Ventures Inc.). Kodiak is a Vancouver, Canada based, publicly traded company junior mineral exploration company focused on the acquisition, exploration and development of copper properties in Canada and the USA.

The MPD Project is situated in the Similkameen and Nicola Mining Divisions of British Columbia, approximately 10 kilometres (km) north of Princeton and approximately 25 km southeast of Merritt (Figure 2.1). The Project comprises 108 mineral claims covering a total area of 344 km² (34,432.95 hectares).

This Report summarizes a National Instrument 43-101 (NI 43-101) Standards of Disclosure for Mineral Projects Initial Mineral Resource Estimate (MRE) for the Project and provides a technical summary of the relevant location, tenure, historical exploration, and geological information, and recommendations for future exploration programs. This Report summarizes the technical information available up to the Effective Date of June 25, 2025.

This Report was prepared by Qualified Persons (QPs) in accordance with disclosure and reporting requirements set forth in the NI 43-101 Standards of Disclosure for Mineral Projects (effective May 9, 2016), Companion Policy 43-101CP Standards of Disclosure for Mineral Projects (effective February 25, 2016), Form 43-101F1 (effective June 30, 2011) of the British Columbia Securities Administrators, the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Mineral Exploration Best Practice Guidelines (November 23, 2018), the CIM Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines (November 29, 2019) and the CIM Definition Standards (May 10, 2014).

2.2 Authors and Site Inspection

The authors of this Technical Report (the "Authors") are Mr. Alfonso Rodriguez M.Sc., P. Geo. of APEX, Mr. James N. Gray, B.Sc., P. Geo. of Advantage Geoservices and Mr. Shane Tad Crowie P.Eng., of JDS. All Authors are fully independent of the Issuer and are QPs as defined in NI 43-101. NI 43-101 and CIM describe a QP as "an individual who is an engineer or geoscientist with at least five years of experience in mineral exploration, mine development or operation, or mineral project assessment, or any combination of these; has experience relevant to the subject matter of the mineral project and the Technical Report; and is a member or licensee in good standing of a professional association." The Authors have been involved in all aspects of mineral exploration and Mineral Resource estimations for precious and base metal mineral projects and deposits in Canada and internationally. The QPs and the Report sections for which they are taking responsibility are presented in Table 2-1.

Figure 2.1 General location of the MPD Project.

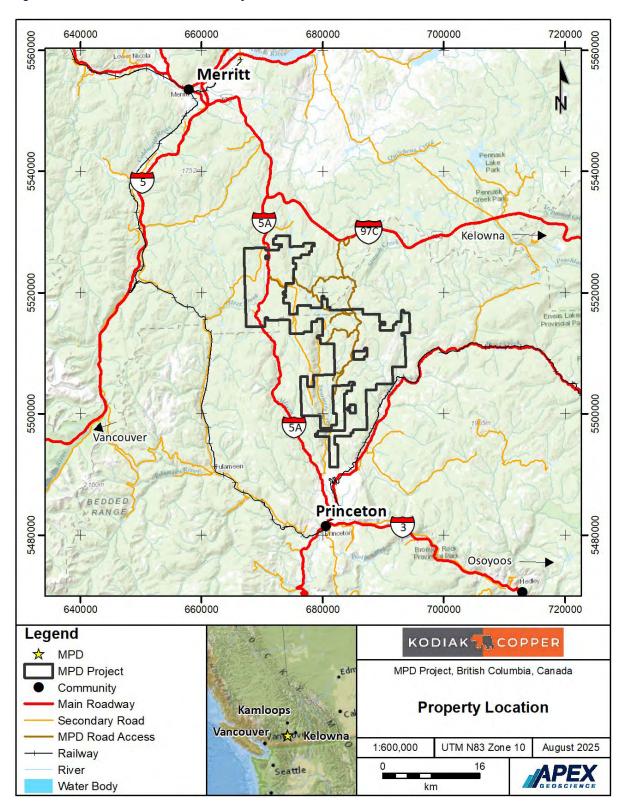


Table 2-1 Qualified Persons and division of responsibilities

Qualified Person	Professional Designation	Affiliation	Report Section
Alfonso Rodriguez	P. Geo.	Senior Geologist at APEX	1.1 to 1.6, 1.9, 2 to 11, 12.1.2, 12.2- 12.4, 23 to 24, 25.1 to 25.3, 25.5, 25.6, 26 to 27, 28.1
James N. Gray	P.Geo.	Resource Estimation Specialist, Advantage Geoservices	1.8, 12.1.1, 14, 25.4, 28.2
Shane Tad Crowie	P. Eng.	Senior Metallurgist, JDS	1.7, 13, 28.3

Mr. Rodriguez is a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia ("EGBC"; Membership Number 44993). Mr. Rodriguez has worked as a mineral exploration geologist for more than 19 years since graduating from university and has been involved in all aspects of mineral exploration for precious and base metal deposits in Canada and internationally, including porphyry copper deposits. Mr. Rodriguez, M.Sc., P.Geo. is responsible for Sections 1.1 to 1.6, 1.9, 2 to 11, 12.1.2, 12.2-12.4, 23 to 24, 25.1 to 25.3, 25.5, 25.6, 26 to 27, and 28.1.

Mr. Gray is a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia (EGBC Membership Number 27022). Mr. Gray has worked as a mining and mineral resource estimation geologist for more than 40 years since his graduation from university. Mr. Gray has been involved in all aspects of mineral exploration and mineral resource estimations for precious and base metal mineral projects and deposits in Canada and internationally. Mr. Gray is a Resource Estimation Specialist with more than 35 years of experience in deposit modeling and resource estimation. Mr. Gray, B.Sc., P.Geo. is responsible for Sections 1.8, 12.1.1, 14, 25.4 and 28.2 of the Report.

Mr. Shane Tad Crowie is a Professional Engineer with the Association of Professional Engineers and Geoscientists of British Columbia (EGBC; Licence# 34052) and has worked as a mineral processing engineer for more than 20 continuous years since his graduation from university. Mr. Crowie BASc., P.Eng. is responsible for Section 1.7, 13 and 28.3 of the Report.

Mr. Rodriguez visited the Project on May 5th, 2022, on September 15th, 2022, and more recently on June 23 and 24, 2025. Visits in 2022 featured a tour on the Property and initial review of drill hole data, core procedures and core logging procedures. Recent inspections, in 2025, were conducted to assess the current site conditions and access, as well as the property geology, alteration, and mineralization, and to collect independent verification samples from drill holes, historical showing and trenches. Observations and results from Mr. Rodriguez's site visit and core sampling verify the presence of Cu mineralization at the Property. Rock types and mineralization observed in the drill core are consistent with the reported geology and historical exploration results.

2.3 Sources of Information

In the preparation of this report, the Authors have relied on information obtained through a review of public and private documents, reports and data. The Authors, in writing this Report, used sources of information as listed in Section 27 "References". Government reports were prepared by Qualified Persons holding postsecondary geology, or related university degree(s), and are therefore deemed to be accurate. For those reports that were written by others, who are not Qualified Persons, the information is assumed to be reasonably accurate based on data review and site visits conducted by the Author(s).

The QPs have reviewed all government and miscellaneous reports, and commercial laboratory analytical data. The QPs have deemed that these reports and information, to the best of their knowledge, are valid contributions. The Authors take ownership of the ideas and values as they pertain to the current technical report.

2.4 Units of Measure

All units of measurement used in this This Technical Report are metric. All currency is in Canadian dollars (CAD\$), unless otherwise noted. A list of abbreviations and units of measure is provided in Table 2-2.

Table 2-2 List of Abbreviations and Units of Measure

Symbol	Description	Symbol	Description
%	Percent sign	km²	Square kilometre
٥	Degree	m	Metres
°C	Degree Celsius	m^2	Square metres
°F	Degree Fahrenheit	m³	Cubic metres
μm	micron	mm	millimetre
AA	Atomic absorption	mm²	square millimetre
Ag	Silver	mm³	cubic millimetre
Au	Gold	Moz	Million troy ounces
AuEq	Gold equivalent grade	MRE	Mineral Resource Estimate
Az	Azimuth	Mt	Million tonnes
CAD\$	Canadian dollar	NAD 83	North American Datum of 1983
cm	centimetre	NHD	National Higher Diploma
cm ²	square centimetre	NQ	Drill core size (4.8 cm in diameter)
cm ³	cubic centimetre	OZ	Ounce
Cu	Copper	OZ	Troy ounce (31.1035 grams)
DDH	Diamond drill hole	Pb	Lead
ft	Feet	ppb	Parts per billion
ft ²	Square feet	ppm	Parts per million
ft³	Cubic feet	QA	Quality Assurance
g	Grams	QC	Quality Control
g/t or gpt	Grams per Tonne	QP	Qualified Person
GPS	Global Positioning System	RC	Reverse circulation drilling
На	Hectares	RQD	Rock quality description
ha	Hectare	SG	Specific Gravity

Symbol	Description	Symbol	Description
HQ	Drill core size (6.3 cm in diameter)	Tonnes or T	Metric tonnes
ICP	Induced coupled plasma	US\$	US Dollar
kg	Kilograms	UTM	Universal Transverse Mercator
km	Kilometres	Zn	Zinc

3 Reliance on Other Experts

The QPs are not qualified to provide an opinion or comment on issues related to legal agreements, patented mining titles, mineral claims, royalties, taxation, or environmental matters. Accordingly, the authors disclaim portions of this Technical Report in Section 4, Property Description and Location.

The Author relied on Kodiak to provide all pertinent information concerning the legal status of the Project and environmental matters related to the Project. The Author relied on the following documents to summarize the legal status, royalties and agreements and mineral tenure status of the MPD Project in Section 4:

- "Purchase Agreement" between Rene Franz Bernard and Dunnedin Ventures Inc. dated Nov 16, 2018, provided to the QP by the Emily McNie, Director of Operations and Sustainability at Kodiak via SharePoint in June 2025.
- "Property Purchase Agreement" between Kodiak and Orogen Royalties Inc. and Evrim Exploration Canada Corp. dated April 26, 2021, provided to the QP by the Emily McNie, Director of Operations and Sustainability at Kodiak via email in July 2025.
- "Purchase Agreement" between Kodiak and Donald Rippon dated Feb 22, 2023, provided to the QP by the Emily McNie, Director of Operations and Sustainability at Kodiak via SharePoint in June 2025.
- "Purchase Agreement" between Kodiak and Pinwheel Resources Ltd. dated Sept 11, 2024, provided to the QP by the Emily McNie, Director of Operations and Sustainability at Kodiak via SharePoint in June 2025.
- "Purchase Agreement" between Kodiak and Guy and Christopher Delorme dated Jan 17, 2025, provided to the QP by the Emily McNie, Director of Operations and Sustainability at Kodiak via SharePoint in June 2025.

The Author verified the ownership and expiration dates of the MPD Project mineral claims using the British Columbia Mineral Tenures Online Administration System on May 20, 2025.

4 Property Description and Location

4.1 Description and Location

The MPD Project is situated in the Similkameen and Nicola Mining Divisions of British Columbia, approximately 10 km north of Princeton and approximately 25 km southeast of Merritt (Figure 2.1). Vehicle access to the Project is possible by multiple routes from Merritt or Princeton via Highway 5A or 97C. An extensive network of Forest Service Roads covers the Property, and all areas are easily accessible by truck or all-terrain vehicles on non-serviced roads.

The approximate centre of the main mineral occurrence within the Property, called the 'Gate' Zone, is located at Universal Transverse Mercator ("UTM") NAD83, Zone 10 Easting 4797800 m, Northing 5401360 m (48° 45' 54" North latitude / 87° 16' 30" West longitude).

The Project comprises 108 mineral claims covering a combined area of 344 km² (34,432.95 hectares [ha]) held by Kodiak (Table 4-1; Figure 4.1). The mineral claims are administered by the British Columbia government.

The issuance of a mineral claim from the Mineral Titles Branch of the Ministry of Mining and Critical Minerals provides a chattel interest in the land and the exclusive right to exploration for minerals, but not land ownership (Mineral Tenure Act, RSBC 1996, c 292).

A recorded holder may hold a claim until the expiry date, and after that, in accordance with the regulations, may hold the claim from year to year by doing exploration and development and registering a statement of the exploration and development, or making payments instead of exploration and development (Mineral Tenure Act, RSBC 1996, c 292).

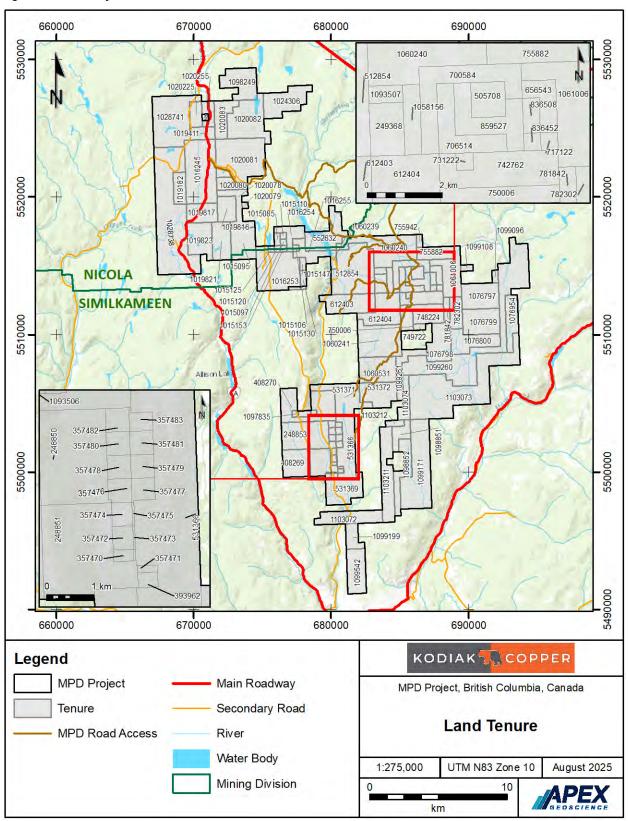
Table 4-1 MPD Project Mineral Claims

Mineral Claim	Claim Name	Area (ha)	Map Number	Issue Date	Good To Date	Status	Owner
248850	AXE 3000	400	092H068	1980/DEC/11	2034/DEC/31	GOOD	Kodiak
248851	AXE 4000	400	092H068	1980/DEC/11	2034/DEC/31	GOOD	Kodiak
248853	AXE 6000	400	092H068	1980/DEC/11	2034/DEC/31	GOOD	Kodiak
249368	DILL #2	400	092H078	1988/OCT/13	2034/DEC/31	GOOD	Kodiak
357470	AXE 100	25	092H068	1997/JUN/26	2034/DEC/31	GOOD	Kodiak
357471	AXE 200	25	092H068	1997/JUN/26	2034/DEC/31	GOOD	Kodiak
357472	AXE 300	25	092H068	1997/JUN/26	2034/DEC/31	GOOD	Kodiak
357473	AXE 400	25	092H068	1997/JUN/26	2034/DEC/31	GOOD	Kodiak
357474	AXE 500	25	092H068	1997/JUN/26	2034/DEC/31	GOOD	Kodiak
357475	AXE 600	25	092H068	1997/JUN/26	2034/DEC/31	GOOD	Kodiak
357476	AXE 700	25	092H068	1997/JUN/26	2034/DEC/31	GOOD	Kodiak
357477	AXE 800	25	092H068	1997/JUN/26	2034/DEC/31	GOOD	Kodiak

Mineral Claim	Claim Name	Area (ha)	Map Number	Issue Date	Good To Date	Status	Owner
357478	AXE 900	25	092H068	1997/JUN/26	2034/DEC/31	GOOD	Kodiak
357479	AXE 1000	25	092H068	1997/JUN/26	2034/DEC/31	GOOD	Kodiak
357480	AXE 1100	25	092H068	1997/JUN/26	2034/DEC/31	GOOD	Kodiak
357481	AXE 1200	25	092H068	1997/JUN/26	2034/DEC/31	GOOD	Kodiak
357482	AXE 1300	25	092H068	1997/JUN/26	2034/DEC/31	GOOD	Kodiak
357483	AXE 1400	25	092H068	1997/JUN/26	2034/DEC/31	GOOD	Kodiak
393962	AXE 1500	25	092H068	2002/JUN/12	2034/DEC/31	GOOD	Kodiak
408269	AXE 5000	400	092H068	2004/FEB/18	2034/DEC/31	GOOD	Kodiak
408270	AXE 7000	500	092H068	2004/FEB/19	2034/DEC/31	GOOD	Kodiak
408271	AXE 8000	500	092H068	2004/FEB/19	2034/DEC/31	GOOD	Kodiak
505708		83.49	092H	2005/FEB/03	2034/DEC/31	GOOD	Kodiak
512854		1022.76	092H	2005/MAY/17	2034/DEC/31	GOOD	Kodiak
531366	SWAN 2000	523.03	092H	2006/APR/06	2034/DEC/31	GOOD	Kodiak
531369	SWAN 3000	523.32	092H	2006/APR/06	2034/DEC/31	GOOD	Kodiak
531371	SWAN 4000	522.68	092H	2006/APR/06	2034/DEC/31	GOOD	Kodiak
531372	SWAN 5000	439.04	092H	2006/APR/06	2034/DEC/31	GOOD	Kodiak
552632	PRIME COPPER	521.56	092H	2007/FEB/24	2034/DEC/31	GOOD	Kodiak
612403	MAN 2	522.04	092H	2009/JUL/27	2034/DEC/31	GOOD	Kodiak
612404	MAN 3	522.09	092H	2009/JUL/27	2034/DEC/31	GOOD	Kodiak
656543		83.49	092H	2009/OCT/21	2034/DEC/31	GOOD	Kodiak
700584		229.60	092H	2010/JAN/16	2034/DEC/31	GOOD	Kodiak
706514		146.13	092H	2010/FEB/18	2034/DEC/31	GOOD	Kodiak
717122	DRILL	20.88	092H	2010/MAR/06	2034/DEC/31	GOOD	Kodiak
731222		20.88	092H	2010/MAR/20	2034/DEC/31	GOOD	Kodiak
742762		271.44	092H	2010/APR/07	2034/DEC/31	GOOD	Kodiak
748224		208.85	092H	2010/APR/14	2034/DEC/31	GOOD	Kodiak
749722		41.78	092H	2010/APR/16	2034/DEC/31	GOOD	Kodiak
750006		271.50	092H	2010/APR/16	2034/DEC/31	GOOD	Kodiak
755882		250.42	092H	2010/APR/24	2034/DEC/31	GOOD	Kodiak
755942		41.73	092H	2010/APR/24	2034/DEC/31	GOOD	Kodiak

Mineral Claim	Claim Name	Area (ha)	Map Number	Issue Date	Good To Date	Status	Owner
781842		83.53	092H	2010/MAY/30	2034/DEC/31	GOOD	Kodiak
782302		208.84	092H	2010/MAY/31	2034/DEC/31	GOOD	Kodiak
836452		20.88	092H	2010/OCT/22	2034/DEC/31	GOOD	Kodiak
836508		41.75	092H	2010/OCT/23	2034/DEC/31	GOOD	Kodiak
859527		167.00	092H	2011/JUN/26	2034/DEC/31	GOOD	Kodiak
1015085		41.73	092H	2012/DEC/07	2034/DEC/31	GOOD	Kodiak
1015095		417.29	092H	2012/DEC/07	2034/DEC/31	GOOD	Kodiak
1015097	KETCHAM DRILL	20.86	092H	2012/DEC/07	2034/DEC/31	GOOD	Kodiak
1015106		20.87	092H	2012/DEC/07	2025/DEC/31	GOOD	Kodiak
1015110	KETCHAM 3	20.86	092H	2012/DEC/07	2034/DEC/31	GOOD	Kodiak
1015120	KATCHAM 2	20.87	092H	2012/DEC/07	2034/DEC/31	GOOD	Kodiak
1015125	KETCHM 4	20.87	092H	2012/DEC/07	2034/DEC/31	GOOD	Kodiak
1015130		62.62	092H	2012/DEC/07	2034/DEC/31	GOOD	Kodiak
1015147		41.74	092H	2012/DEC/07	2034/DEC/31	GOOD	Kodiak
1015153		20.87	092H	2012/DEC/07	2025/DEC/31	GOOD	Kodiak
1016245	ASPEN 3	1042.21	092H	2013/JAN/23	2034/DEC/31	GOOD	Kodiak
1016253	ASPEN 6	897.50	092H	2013/JAN/23	2034/DEC/31	GOOD	Kodiak
1016254	ASPEN 7	208.62	092H	2013/JAN/23	2034/DEC/31	GOOD	Kodiak
1016255	ASPEN 8	229.54	092H	2013/JAN/23	2034/DEC/31	GOOD	Kodiak
1019182	ASPEN WEST	208.49	092H	2013/MAY/03	2034/DEC/31	GOOD	Kodiak
1019411	ASPEN ADD 1	166.67	092H	2013/MAY/10	2034/DEC/31	GOOD	Kodiak
1019816	ASPEN ADD 1	250.26	092H	2013/MAY/27	2034/DEC/31	GOOD	Kodiak
1019817	ASPEN ADD 2	312.83	092H	2013/MAY/27	2034/DEC/31	GOOD	Kodiak
1019821	ASPEN ADD 3	375.54	092H	2013/MAY/27	2034/DEC/31	GOOD	Kodiak
1019823	ASPEN ADD 4	438.12	092H	2013/MAY/27	2034/DEC/31	GOOD	Kodiak
1020078	Aspen 5	271.11	092H	2013/JAN/23	2034/DEC/31	GOOD	Kodiak
1020079	RB-1015113	20.85	092H	2013/JAN/23	2034/DEC/31	GOOD	Kodiak
1020080	Aspen 4	166.78	092H	2013/JAN/23	2034/DEC/31	GOOD	Kodiak

Mineral Claim	Claim Name	Area (ha)	Map Number	Issue Date	Good To Date	Status	Owner
1020081	RB-1015090	1042.03	092H	2013/JAN/23	2034/DEC/31	GOOD	Kodiak
1020082	Aspen 2	749.88	092H	2013/JAN/23	2034/DEC/31	GOOD	Kodiak
1020083	RB-1015094- 1015108	312.43	092H	2013/JAN/23	2034/DEC/31	GOOD	Kodiak
1020225	ASPEN ADD	166.62	092H	2013/JUN/11	2034/DEC/31	GOOD	Kodiak
1020255	ASP 1	145.79	092H	2013/JUN/12	2034/DEC/31	GOOD	Kodiak
1024306	BLUEY EAST	562.27	092H	2013/DEC/08	2034/DEC/31	GOOD	Kodiak
1028738	ASP W1	2002.19	092H	2014/JUN/04	2034/DEC/31	GOOD	Kodiak
1028741	ASP W2	1020.63	092H	2014/JUN/04	2034/DEC/31	GOOD	Kodiak
1058156	DILL CONNECTO R	83.50	092H	2018/FEB/01	2034/DEC/31	GOOD	Kodiak
1060239	LAKE CLAIM	62.61	092H	2018/APR/23	2034/DEC/31	GOOD	Kodiak
1060240	MAN/PRIME NORTH	813.79	092H	2018/APR/23	2034/DEC/31	GOOD	Kodiak
1060241	MAN/PRIME SOUTH	752.11	092H	2018/APR/23	2034/DEC/31	GOOD	Kodiak
1060531	NTEC 1	501.60	092H	2018/MAY/11	2034/DEC/31	GOOD	Kodiak
1061006	DILLARD EAST	459.22	092H	2018/JUN/08	2034/DEC/31	GOOD	Kodiak
1076797	SE1	501.11	092H	2020/JUN/16	2034/DEC/31	GOOD	Kodiak
1076798	SE2	438.74	092H	2020/JUN/16	2034/DEC/31	GOOD	Kodiak
1076799	SE3	501.28	092H	2020/JUN/16	2034/DEC/31	GOOD	Kodiak
1076800	SE4	438.73	092H	2020/JUN/16	2034/DEC/31	GOOD	Kodiak
1076954	SIWASH CREEK	313.26	092H	2020/JUN/25	2034/DEC/31	GOOD	Kodiak
1093506		41.82	092H	2022/FEB/26	2034/DEC/31	GOOD	Kodiak
1093507		41.75	092H	2022/FEB/26	2034/DEC/31	GOOD	Kodiak
1097834	AXE001	20.91	092H	2022/SEP/27	2034/DEC/31	GOOD	Kodiak
1097835	AXE002	20.91	092H	2022/SEP/27	2034/DEC/31	GOOD	Kodiak
1098249	TOM	499.66	092H	2022/OCT/20	2034/DEC/31	GOOD	Kodiak
1098851	SWAN 2022 1000	188.26	092H	2022/OCT/22	2034/DEC/31	GOOD	Kodiak
1098852	SWAN 2022 2000	334.86	092H	2022/OCT/22	2034/DEC/31	GOOD	Kodiak


Mineral Claim	Claim Name	Area (ha)	Map Number	Issue Date	Good To Date	Status	Owner
1099096	SIWASH SHOW	41.75	092H	2022/NOV/02	2034/DEC/31	GOOD	Kodiak
1099108		41.74	092H	2022/NOV/02	2034/DEC/31	GOOD	Kodiak
1099171	AXE 2022 EAST	1088.22	092H	2022/NOV/06	2034/DEC/31	GOOD	Kodiak
1099199	AXE 2022 SOUTH	188.51	092H	2022/NOV/08	2034/DEC/31	GOOD	Kodiak
1099260	Kingsvale	1796.32	092H	2020/JUN/23	2034/DEC/31	GOOD	Kodiak
1099261	Kingsvale west	250.80	092H	2020/JUN/23	2034/DEC/31	GOOD	Kodiak
1099542	AXE SOUTHERN	440.06	092H	2022/NOV/28	2034/DEC/31	GOOD	Kodiak
1103072	Axe South 1000	439.75	092H	2020/SEP/05	2034/DEC/31	GOOD	Kodiak
1103073	MPD East 1000	1860.49	092H	2020/SEP/05	2034/DEC/31	GOOD	Kodiak
1103074	MPD East 2000	188.18	092H	2020/SEP/05	2034/DEC/31	GOOD	Kodiak
1103211	AXE EAST 3000	606.94	092H	2020/SEP/05	2034/DEC/31	GOOD	Kodiak
1103212	AXE EAST 2000	62.74	092H	2020/SEP/05	2034/DEC/31	GOOD	Kodiak

Source: British Columbia Mineral Tenures Online (2025a; b; c)

Figure 4.1 MPD Project Mineral Claims

4.2 Royalties and Agreements

The current extent of the MPD Project is the result of the consolidation of numerous adjacent properties through property purchase agreement as described below and the staking of 5 claims directly by Kodiak (Figure 4.2). Each purchase agreement is associated with a net smelter royalty (NSR) pertaining to the specific claims as described in each agreement and summarized below (Figure 4.3).

4.2.1 Man, Prime, Dillard (MPD) claims

On November 16, 2018, Dunnedin Ventures Inc. (now Kodiak Copper Corp.) signed a Purchase Agreement with a private vendor, Rene Franz Bernard, to acquire a 100 per cent (%) interest in 28 mineral claims covering the Man, Prime and Dillard Properties. The terms of the agreement included:

- \$100,000 in cash and issuance of 1,800,000 Dunnedin (Kodiak) shares upon closing of the transaction; and
- \$100,000 in cash paid on April 1, 2019, upon proof of assessment expenditure filing

Underlying royalties include a 1.25% NSR payable to Bearclaw Capital Corp. on mineral claims 552632 and 512854. Kodiak retains an option to buy-back the NSR for a one-time payment to Bearclaw of C\$1,250,000. A 2% NSR payable to Almaden Minerals Ltd. on mineral claim 249368.

The remaining 25 claims are not subject to any royalty agreements.

4.2.2 Axe claims

On April 16, 2021, Kodiak signed a Property Purchase Agreement with Orogen Royalties Inc. ("Orogen") and Evrim Exploration Canada Corp. ("Evrim") to acquire the adjacent Axe Property, consisting of 25 claims. The terms of the purchase agreement included:

- Issuance of 950,000 Kodiak shares to the seller upon closing of the transaction.
- A cash payment equivalent to the value of 75,000 Orogen shares up to a maximum of C\$50,000 upon the completion of 5,000 metres of drilling on the Axe Property (paid July 31, 2023);
- A cash payment equivalent to the value of 200,000 Orogen shares up to a maximum of C\$150,000 upon the announcement of a measured or indicated mineral resource estimate of at least 500 million tonnes at a grade of at least 0.40% copper equivalent; and
- A cash payment equivalent to the value of 250,000 Orogen shares up to a maximum of C\$200,000 upon the completion of a feasibility study on the Axe Property

Evrim (now Orogen Royalties Inc.) retains a 2% NSR on all of the claims comprising the Axe Property. Kodiak has the option to purchase 0.5% of the NSR for C\$2,000,000 at any time. Following this payment the Orogen Royalty will be reduced to 1.5% NSR.

The Axe Property claims are subject to additional underlying NSR agreements as follows:

Figure 4.2 Purchase agreements

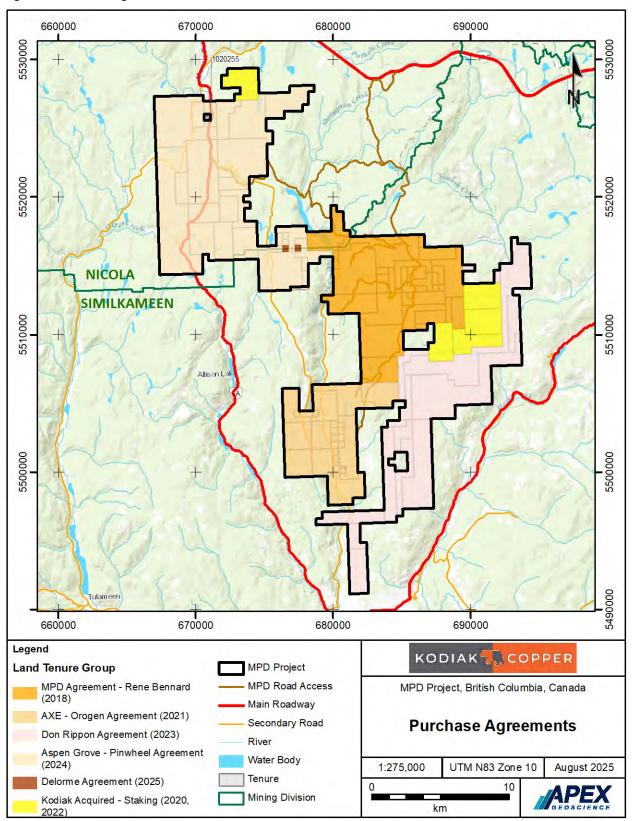
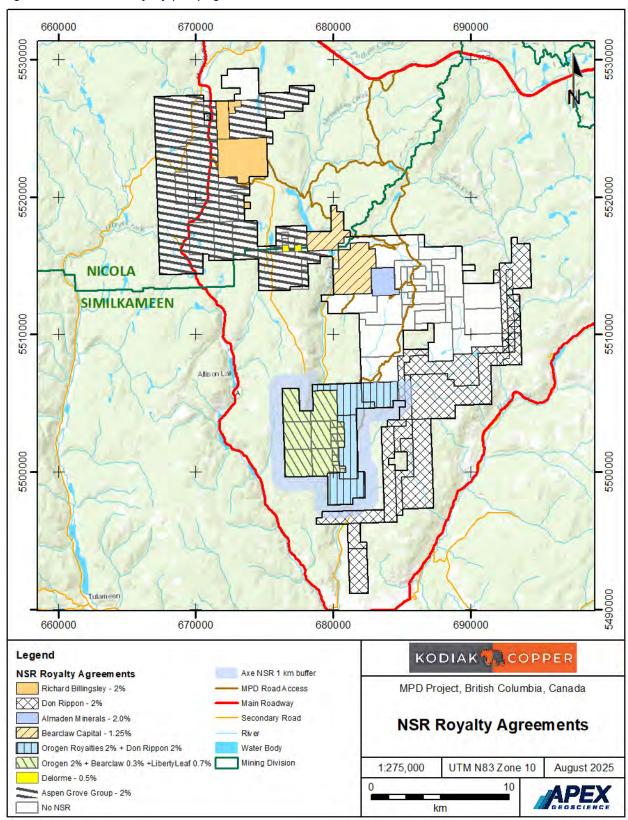



Figure 4.3 Net Smelter Royalty (NSR) Agreements.

Bearclaw Royalty Agreement dated December 9, 2016, between Evrim Resources Corp. (now Orogen Royalties Inc.) and Bearclaw Capital Corp. (Bearclaw). Bearclaw retains a 0.3% NSR on the claims comprising the Axe Property excluding the claims covered by the Rippon Royalty.

Liberty Leaf Royalty Agreement dated December 9, 2016, between Evrim Resources Corp. (now Orogen Royalties Inc.) and Liberty Leaf Holdings Ltd. (Liberty). Liberty retains a 0.7% NSR on the claims comprising the Axe Property excluding the claims covered by the Rippon Royalty.

Rippon Royalty Agreement dated March 23, 2017, between Weststar Resources Corp. and Donald J. Rippon. Donald J. Rippon retains a 2% NSR on 4 claims which were part of the Axe Property (531366, 531369, 531371, 531372). The purchaser has the option to purchase one half of the NSR, being 1%, for \$1,000,000 and the remaining one half of the NSR, being 1%, for \$2,000,000.

4.2.3 Don Rippon claims

On April 4, 2023, Kodiak signed a Property Purchase Agreement with Donald Rippon of Mineworks Ventures Inc. to acquire 11 mineral claims adjacent to the southwest of the MPD Project. The terms of the agreement include the following:

- Issuance of 150,000 Kodiak shares to the seller upon closing of the transaction;
- cash payment of C\$5,000.

Don Rippon retains a 2% NSR on the claims. Kodiak has the option to purchase one half of the NSR, being 1%, for C\$3,000,000 at any time.

Subsequently, two claims were each subdivided into two smaller claims to correct an MTO overlap. Don Rippon also transferred an additional claim to Kodiak, bringing the total number of claims transferred by Rippon to 15.

4.2.4 Aspen Grove claims

On September 11, 2024, Kodiak signed a Purchase Agreement with Pinwheel Resources Ltd. to acquire the Aspen Grove Property comprising 29 mineral claims located contiguous to the northwest of the original MPD claims. The terms of the agreement include the following:

• issuance of 1,400,000 Kodiak shares to the seller upon closing of the transaction.

The Aspen Grove claims are subject to a pre-existing NSR of 2% on certain blocks of claims. Kodiak retains the right to buy back 0.5% or 1% of the NSRs respectively for \$2.0 million or \$3.0 million prior to publication of a feasibility study.

4.2.5 Delorme claims

On March 6, 2025 Kodiak completed a claim purchase agreement with Christopher and Guy Delorme, private and arms-length vendors to acquire 2 mineral claims. The terms of the agreement include the following:

• Issuance of 143,349 Kodiak common shares to the seller upon closing of the transaction.

The Delorme's retain a 0.5% NSR on the claims. Kodiak has the option to purchase the entire NSR at anytime for \$250,000.

4.3 Environmental Liabilities, Permitting and Significant Factors

In British Columbia, all work carried out on a claim that disturbs the surface by mechanical means (including drilling, trenching, excavating, blasting, construction or demolishment of a camp or access, induced polarization (IP) surveys using exposed electrodes, and site reclamation) requires a Notice of Work (NOW) permit under the Mines Act, and the owner must receive written approval from the District Inspector of Mines prior to undertaking the work. The NOW must include: the pertinent information as outlined in the Mines Act; additional information as required by the Inspector; maps and schedules for the proposed work; applicable land use designation; up to date tenure information; and details of actions that will minimize any adverse impacts of the proposed activity. The claim owner must outline the scope and type of work to be conducted, and approval generally takes six to twelve months.

Exploration activities that do not require a Notice of Work permit include prospecting with hand tools, geological/geochemical surveys, airborne geophysical surveys, ground geophysical surveys without exposed electrodes, hand trenching (no explosives) and the establishment of grids (no tree cutting). These activities and those that require Permits are outlined and governed by the Mines Act of British Columbia.

The Chief Inspector of Mines makes the decision whether land access will be permitted. Other agencies, principally the Ministry of Forests lands and Natural Resources (FLNRO), determine where and how the access may be constructed and used. With the Chief Inspector's authorization, a mineral tenure holder must be issued the appropriate "Special Use Permit" by the FLNRO, subject to specified terms and conditions. The Ministry of Mining and Critical Minerals (MCM) makes the decision whether land access is appropriate, and the FLNRO must issue a Special Use Permit. However, three ministries, namely the MCM; FLNRO; and Ministry of Environment and Climate Change Strategy, jointly determine the location, design and maintenance provisions of the approved road.

British Columbia's Mines Act ([RSBC 1996] CHAPTER 293) and Mineral Tenure Act ([RSBC 1996] CHAPTER 292) is the provincial legislation that governs and regulates prospecting, mineral exploration, mine development and rehabilitation in the province. The purpose of these Acts is to encourage prospecting, online mining claim registration and exploration for the development of mineral resources, in a manner consistent with the recognition and affirmation of existing Aboriginal and treaty rights in Section 35 of the Constitution Act, 1982.

For exploration activities apart from prospecting, mapping and surface sampling, a Mines Act Permit must be obtained from the Ministry of Mining and Critical Minerals. The type of work being proposed for the Project is considered exploration by the British Columbia government. Kodiak currently has two active Mines Act Permits: MX-4-462 for the original MPD claim block and MX-4-713 for the Axe claims. A permit application has been submitted to the Ministry of Mining and Critical Minerals to amend one of the existing permits (MX-4-686) on the Aspen Grove claims.

When Kodiak initiated exploration in the area in 2019, the company was informed by the Ministry of Energy, Mines and Low Carbon Innovation ("EMLI") that there was an existing exploration permit (MX-4-462) attached to one of the claims of interest, and that the permit had Reclamation Obligations associated with it. Rather than close the permit and initiate a new permitting process, Kodiak elected to accept the existing Reclamation Obligations and subsequently submitted a Notice of Work ("NoW") to amend permit MX-4-462. The transfer of reclamation obligations from the previous permit holder to Kodiak was confirmed by a letter from EMLI dated September 6, 2019 (file :14675-30/1620605) after receipt of a Reclamation Plan from Kodiak dated August 23, 2019. The Reclamation Obligations totaled 1.036 Ha and were associated with 7

historical drill sites. Upon inspection by Kodiak, four of the drill sites were observed to be discharging water due to inadequate cementing of the drill holes. All these historical sites have now been reclaimed.

There are no existing disturbances associated with permits MX-4-713 and MX-4-462.

The authors of this report are not aware of any significant environmental liabilities on the MPD Project.

4.4 First Nations Agreements

The MPD Project is located in the unceded Nlaka'pamux, and Syilx territories. Kodiak engages with 23 First Nations communities and Tribal Councils on a regular basis and provides permit applications, annual updates and proposed future work plans to the communities. The Company currently has no agreements with First Nations.

5 Accessibility, Climate, Local Resources, Infrastructure, and Physiography

5.1 Accessibility

The MPD Project can be accessed from Merritt by three different routes (Figure 2.1). From Merritt, travel on HWY 97C to HWY5A then continue south on Highway 5A; at 14 km south turn left onto the Dillard Creek Forest Service Road ("FSR"). The Dillard Creek FSR terminates where the Shrimpton FSR changes to the Jura FSR.

Alternatively, at 4 km on the Dillard Creek FSR, turn right onto the Ketchan FSR and travel south. The East Ketchan FSR changes to the Olerich FSR at 17 km.

The third route from Merritt is via the Okanagan Connector 97C. Driving east on the Connector from Merritt, exit south off 97C to the Loon Lake rest stop; from the rest stop continue onto the Shrimpton Road FSR/Douglas Lake Ranch gate; follow the Shrimpton FSR to the Dillard/Shrimpton FSR intersection.

Alternative access routes are available from Princeton. From Princeton, head north on Highway 5A for 9 kilometres, turn right onto Summers Creek Road and follow for 30 km to Missezula Lake. From Missezula Lake, the Project can be accessed via pre-existing trails. The Project can also be accessed 10 km north of Princeton using the Olerich FSR gate. An alternate route from Princeton is via the Princeton-Summerland Road. On this road, head northeast of Princeton, then continue turn right and go north onto the Jura FSR (Hembrie Mtn Road).

The city of Kamloops has the closest commercial airport to Merritt and the Project. There are regular daily flights to Kamloops from Vancouver and elsewhere in Canada. Merritt is approximately 270 km (~3-hour drive) northeast of Vancouver.

5.2 Site Topography, Elevation and Vegetation

The MPD Project lies along the border between the Thompson-Nicola and the Okanagan-Similkameen Regions. Exploration activity being conducted at the Project is occurring at elevations ranging between 1,000 and 1,600 metres above sea level.

The Project lies within the expansive Similkameen River Watershed. Exploration activities are primarily conducted in the Summers Creek sub-watershed, which flows south from Missezula Lake. Summer Creek continues to flow south until it converges with Allison Creek and ultimately enters the Similkameen River approximately 40 km to the south.

Bedrock is exposed across approximately 20% of the MPD Project, with the remainder of the Property covered by till of varying thickness.

Most mature forest stands on the Property are dominated by Douglas-fir, with some white spruce (wetter sites) and lodgepole pine (drier sites).

5.3 Climate

The majority of the Project area fall within the transitional boundary area between the Interior Douglas-fir biogeoclimatic zone, dry, cool variant (IDFdk2), and the Montane Spruce zone, dry, mild variant (MSdm2). This transitional boundary tends to exist around the 1,400 m above sea level contour, with the MSdm2 zone located above the IDFdk2. The IDF zone experiences warm, dry summers with a relatively long growing season, followed by cool winters (Lloyd et al., 1990). Approximately 20% to 50% of the precipitation in this zone falls as snow, resulting in regular moisture deficits during the growing season.

The general area is relatively dry, with nearby towns Merritt (\sim 595 metres above sea level) and Princeton (\sim 650 metres above sea level) typically receiving 320 mm and 350 mm precipitation annually, respectively. The Merritt area has a semi-arid continental climate, characterized by mild, dry winters with little snowfall and warm, dry, sunny summers. Average mean temperatures ranging from -20° C (January) to +20° C (July). Local lakes usually start to freeze over in mid-November, and thaw in early to mid-May. Exploration is possible year-round.

5.4 Local Resources and Infrastructure

There is currently no surface mining infrastructure on the Project. There are adequate areas within the Property available for potential tailings storage, waste disposal and processing plant sites.

The Project area is located along the border between the Thompson-Nicola and the Okanagan-Similkameen Regions. The nearby municipalities of Merritt, to the north, and Princeton, to the south, are dominated by the logging industry with many exploration and mining services readily available. The nearby city of Merritt has a population of 7,051people (2021 census: Wikipedia) and is located on Highway 5, beside the Canadian Pacific railroad, where it intersects with Highway 5A, Highway 97C and Highway 8. The nearby town of Princeton has a population of 2,894 people (2021 census: Wikipedia) and lies at the confluence of the Tulameen River and Similkameen Rivers, just east of the Cascade Mountains at the junction of BC Highway 3 and 5A. There is a major north-south electrical transmission line cutting across the Property.

Based on the location, access, and climate, exploration and mining work on the Project can be conducted year-round, although thaw and freeze transitions and snowfall during spring and fall months may limit access. There are no other significant factors or risks that the Author is aware of that would affect access or the ability to perform work on the Property.

In the opinion of the Author, the Project is of sufficient size to accommodate potential exploration and mining facilities, including waste rock disposal, potential tailings storage areas, and processing infrastructure.

6 History

The current MPD Project is a consolidation of numerous historical claim blocks. The original land package consisting of 28 mineral claims, acquired by Kodiak in late 2018, combined three historical prospect areas for the first time (Man, Prime and Dillard). Between 2021 and 2025, Kodiak finalised an additional four purchase agreements to acquire the claims adjacent to and surrounding the original MPD claim block to consolidate the current Project area. The acquired, adjacent claim blocks included the historical Axe property and the historical Aspen Grove property. The Historical Exploration section discusses the historical claim blocks separately for clarity.

Historical exploration at the MPD Project has comprised geological mapping, surface sampling, trenching, diamond drilling, and geophysical surveys. A total of 122 diamond drill holes (DDH), totalling 26,345 m were completed on the original MPD claim block by previous operators from 1965 to 2014. A total of 33 DDH holes were drilled between 1965 and 1969, with 12 DDH between 1979 and 1981, 8 DDH in 1988, 11 DDH from 1989 to 1991, 35 DDH between 2007 and 2010, 2 DDH in 2013 and 21 DDH from 2013 to 2014. Another 2 DDH drilled in 1987 and 2 DDH in 1999 are excluded from the total, as their collar information cannot be confirmed.

The exploration history of the MPD, Axe, and Aspen Grove claims blocks is summarized in the following subsections.

6.1 Historical Ownership and Exploration

6.1.1 Man, Prime, and Dillard Claims

Several different companies have worked separate parts of the historical Man, Prime, and Dillard claims dating back to 1937, when the original claims staked in the vicinity of the Prime Target were known as the King George group (MacLeod, 1963).

The main targets on this claim block have been known by many names since the 1930s. The Prime Target has been called King George, Primer, and Prime North Zone; the Man Target was known as the HG claims; the Dillard Target was called Prime South Zone and DILL 2; and the Dillard East Target was termed Dill, Dillard Lake, and DILL 1.

A summary of the historical exploration conducted on the Man, Prime, and Dillard claims is presented in Table 6-1. An overview of historical Man, Prime, and Dillard soil geochemistry for copper and gold are presented in Figures 6.1 and 6.2. Historical drilling on the Man, Prime, and Dillard claims is presented in Figure 6.3. Refer to Section 10 for intercept tables and details regarding the historical drilling programs conducted at the MPD Project.

Table 6-1 Man, Prime, and Dillard Historical Exploration Summary

Year	Description	Property Name	Operator	Owner	AR
1963	580 soil samples, 26.2km of ground EM and magnetic geophysical surveying and geological mapping	Primer	McIntyne Porcupine Mines Ltd.		493 MacLeod, 1963

Year	Description	Property Name	Operator	Owner	AR
1969	1800 soil samples and relogging of 33 diamond drill holes totalling 12,283ft drilled between 1966 and 1969.	Dillard Creek	Pageant Mines		2354 Tully, 1970
1969	386km of airborne magnetometer survey	Primer- Pageant	Pageant Mines	Pageant Mines	2355 Cochrane, 1969
1969	320 soil samples and tectonic analysis	Dillard Creek	Pageant Mines		2356 Chapman, 1970
1972	12.3km of IP surveying and 48.8km of ground magnetic geophysical surveying	Missezula	Rio Tinto Can. Ex.		4169 Nielsen & Gutrath, 1972
1977	geological mapping	Prime	Piper Petroleum		6412 Gutrath, 1977
1978	geological mapping	Prime 2	Piper Petroleum	Piper Petroleum	6877 Gutrath, 1978a
1978	7.3km of ground magnetic geophysical surveying and geological mapping	Prime	Piper Petroleum		6900 Gutrath, 1978b
1978	13.4km of ground magnetic geophysical surveying and geological mapping	Prime	Piper Petroleum	Piper Petroleum	7340 Gutrath, 1979a
1979	geological mapping	Prime	Piper Petroleum	Piper Petroleum	7521 Gutrath, 1979b
1979	9 rock samples, 289 soil samples	HE	Newmont Exploration		7584 Nebocat, 1979
1979	geological mapping	Prime	Piper Petroleum	Piper Petroleum	8241 Gutrath, 1980a
1980	750m of trenching and geological mapping	Prime-HG	Newmont Exploration	Piper Petroleum Ltd.	8256 Nebocat, 1980
1980	geological mapping	Prime	Piper Petroleum	Piper Petroleum	8364 Gutrath, 1980b
1980	IP survey	HG, Prime	Newmont Exploration	Piper Petroleum	8692 Limion, 1980
1981	Report on 3 diamond drill holes	HG	Newmont Exploration	Newmont Exploration	9367 Visagie, 1981a
1981	Report on 1 drill hole totalling 187.6 metres	Prime	Newmont Exploration	Piper Petroleum	9649 Visagie, 1981b
1984	12 km of mag/VLF-EM geophysical surveying	Prime	Peter Christopher	Giant Piper Exploration Inc.	13231 Christopher, 1984
1988	224 soil samples	Prime	Consolidated Silver Butte Mines	Giant Piper Exploration Inc.	16985 Christopher, 1988
1987	350 soil samples and 9 rock samples	Prime	Consolidated Silver Butte Mines	Giant Piper Exploration Inc.	17077 Christopher, 1987

Year	Description	Property Name	Operator	Owner	AR
1987	3 silt samples, 25 soil samples and prospecting	Man	Brican Resources	Mehner	17004 Mehner, 1988
1989	8 diamond drill holes totalling 1508.7m	Man	Brican Resources	Mehner, Brican Resources	18776 Wynne, 1989
1992	41 rock samples, 5 silt samples, geological mapping	Man-Prime	Noranda Mining and Exploration	Hemlo Gold Mines	22446 Gill, 1992a
1992	23 rock samples, 122 soil samples	Man-Prime	Noranda Mining and Exploration	Hemlo Gold Mines	22611 Gill, 1992b
1997	120 soil samples	Prime North	Discovery Consultants	William Gilmour	25189 Gilmour, 1997
2007	56.1km of IP and magnetic geophysical surveying.	Man-Prime	Candorado Operating Company	Bearclaw Capital	29381 Koffyberg, 2007
2008	1151 soil samples and geological mapping	Man-Prime	Candorado Operating Company	Bearclaw Capital	30033 Tilsley, 2008
2010	35 diamond drill holes totalling 6881.3m, 31 rock samples, 6 petrographic samples	Man-Prime	Candorado Operating Company	Candorado Operating Company	31709 Gilmour & Koffyberg, 2010
2011	88 rock samples	Dillard	Fjordland Exploration		32558 Peters, 2011
2012	11km of IP surveying and 23.3km of ground magnetic geophysical surveying	Dillard	Fjordland Exploration		33363 Peters, 2012
2013	7 diamond drill holes totalling 2636.1m, 49.5km of IP geophysical surveying, 45.3km of ground magnetic geophysics surveying, 293km of airborne magnetic and radiometric geophysical surveying, 17 petrographic samples	Dillard	Fjordland Exploration		34560 Peters, 2014
2013	2 diamond drill holes totalling 1289.9m with 699 samples.	Man-Prime	Sunrise Resources	Sunrise Resources	34889 Murton, 2014
2014	14 diamond drill holes totalling 5574m, 1775 core samples, 243 soil samples, 663 rock samples and 10 trenches totalling 2070m.	Dillard	Fjordland Exploration		35301 Peters, 2015a
2015	14 rock sampling and geological mapping	Dillard	Fjordland Exploration		35434 Peters, 2015b
2018	22 rock samples	Man-Prime	Rene Bernard	Rene Bernard	37988 Carpenter & Koffyberg, 2018

Source: APEX (2025)

Figure 6.1 Man, Prime, and Dillard Historical Soil Geochemistry (Cu)

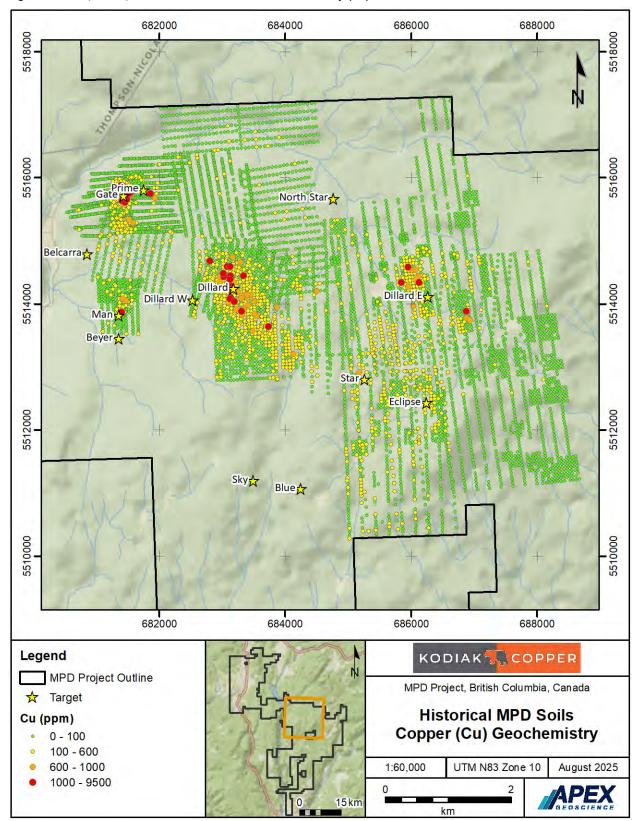


Figure 6.2 Man, Prime, and Dillard Historical Soil Geochemistry (Au)

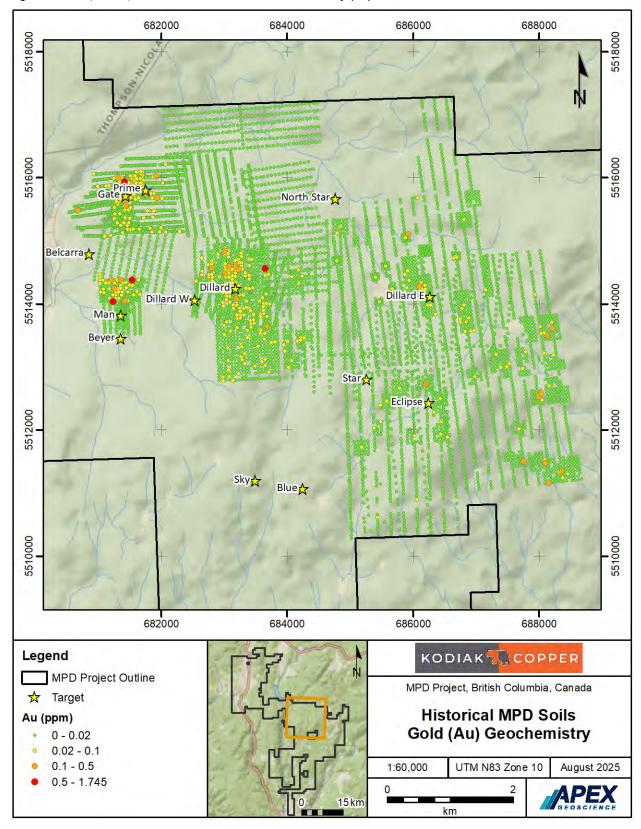
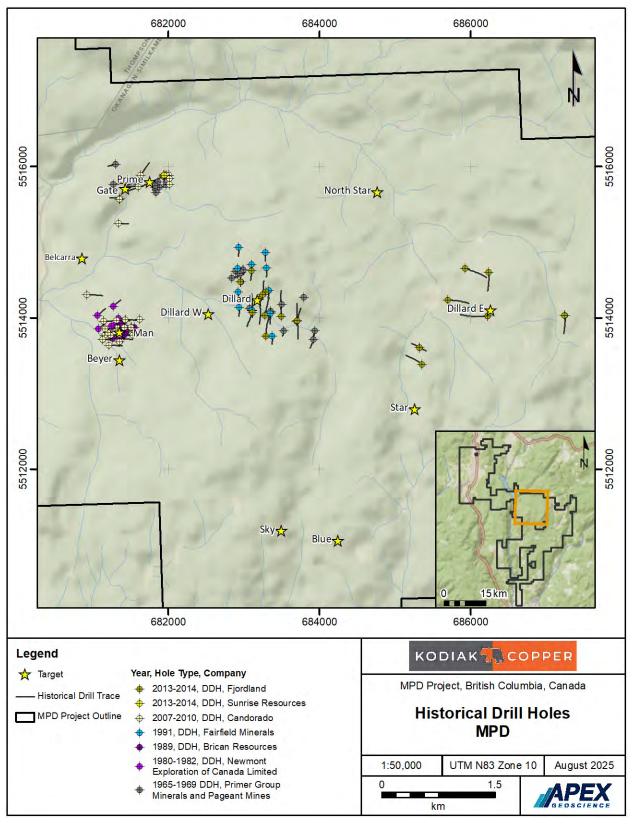



Figure 6.3 Man, Prime, and Dillard Historical Drill Hole Locations and Drill Traces

The history of the Man, Prime, and Dillard claim block is summarized as follows, as sourced from Preto and Koffyberg (2009), Carpenter and Koffyberg (2018), and Peters (2015). The Authors of this Technical Report have reviewed these sources and consider them to contain all the relevant information regarding the exploration history for the MPD Project. Based on the review of available literature and data, the lead Author takes responsibility for the information presented herein.

1961-1963: Primer Group Minerals Ltd. (Primer Group) acquired the Primer Group claims (current mineral claim 512854) in 1961 and optioned the claims to McIntyre Porcupine Mines (McIntyre) in early 1963. McIntyre conducted soil sampling, ground surveying, and geological mapping on the Prime Target in 1963 before relinquishing their option on the property (MacLeod, 1963).

1965-1969: Between 1965 and 1969, Primer Group and Pageant Mines Ltd. (Pageant) completed 33 DDH totalling 12,283.3 ft (3,744 m) on the Prime North Zone (now called the Prime Target) and the Prime South Zone (Dill Showing; Tully, 1970). A combination of AQ and NQ drill core size was used. Drilling targeted anomalous copper that was identified from surface geochemical sampling. Essentially, this drill campaign resulted in the discovery of Prime and Dillard mineralized zones. In 1969, airborne geophysical surveying and soil geochemical surveying was completed on the Primer-Pageant claim group (Chapman, 1970; Cochrane, 1969).

1972: Rio Tinto Canadian Exploration Ltd. optioned the property in 1972 and conducted ground induced polarization (IP) surveying over select Primer Group claims (Nielson and Gutrath, 1972).

1976-1980: Piper Petroleum Ltd. staked claims over the Prime North and Dill zones in 1976 and 1979, respectively. Between 1977 and 1980, Piper Petroleum completed ground magnetic geophysical surveying and geological mapping (Gutrath 1977; 1978a; b; 1979a; b; c; 1980).

In 1979, Newmont Exploration Ltd. (Newmont) optioned the Prime property along with the contiguous HG and MS claims along the southern border of the Prime property.

From 1979 to 1981, work by Newmont consisted of geophysical and geochemical surveying, geological mapping, and diamond drilling (twelve DDH totalling 12,549.4 m; Limion, 1980; Nebocat, 1979, 1980; Visagie, 1981a, b). Newmont's exploration programs were focused on a copper showing discovered on the boundary of the Prime and HG claims, which is now known as the Man Zone. This drill campaign was first to test Man mineralization at depth (Visagie, 1981). Newmont dropped its option, and the Man Zone claims were subsequently allowed to lapse.

Peter Christopher optioned the Prime property from Giant Piper Exploration Inc. (Giant Piper; formerly Piper Petroleum Ltd.) in **1984** and conducted ground magnetic and very low frequency electromagnetic (VLF-EM) geophysical surveying (Christopher, 1984).

1987: Harold Adams staked the Gold Core 1 claim, directly east and adjacent to the DILL 1 claim, in 1987. In 1989, two BQ diamond drill holes totalling 152 m were drilled on the Gold Core property (Crooker, 1989). Only two sections of core were assayed but the collars could not be verified.

1987: In 1987, Giant Piper optioned the Prime property to Consolidated Silver Butte Mines who conducted soil and rock sampling between 1988 and 1989 (Christopher, 1987; 1988).

1987-1988: The Man claim was staked by D. Mehner in 1987. Brican Resources Ltd. (Brican) optioned the property and staked an additional Man claim in 1988. Brican carried out a small stream sediment and soil sampling program and a detailed IP geophysical survey of the property before completing eight DDH totalling 1,508 m (Wynne, 1989; Ziebart, 1988). A combination of BQ and NQ drill core size was used. Drilling targeted IP anomalies and expanded the mineralization discovered by Newmont in 1980. The diamond drill program

on the Man property has shown a broad zone of significant copper-gold mineralisation more or less co-incident with an IP anomaly (Wynne, 1989).

1988-1991: In 1988, Fairfield Minerals Ltd. (Fairfield) staked the Dill property, which was comprised of two claims (DILL 1 and DILL 2) over the current Dillard East and Dillard Targets. The 1988 program focused on gold and copper mineralization and consisted of soil sampling, prospecting, and rock sampling on the Dillard East Target (Rowe, 1989). Fairfield staked an additional 30 claims between 1989 and 1990 and optioned the Dill property to Placer Dome Inc. Exploration from 1989 to 1991 included eleven NQ diamond drill holes totalling 2,030 m, soil geochemical sampling, Mag/VLF-EM and IP geophysical surveying, prospecting, and trenching (Cormier, 1989; 1990; 1991). Drilling in 1991 intersected significant chalcopyrite mineralization, largely structurally controlled and hosted by alkalic monzonites, monzodiorites and diorites in the south and andesitic volcanics in the north of the Dillard area. Mineralization and alteration style was indicative of a volcanic-type porphyry copper model with a convective pattern of hydrothermal fluid flow (Cormier, 1992). The source of numerous anomalous surface gold was not found. Fairfield also suggested that there is a good potential for significant gold-quartz vein or porphyry copper-gold deposits elsewhere on the property.

1991: In 1991, Austar Resources Corp. consolidated the Prime and Man claims and subsequently optioned the property to Noranda Exploration Company Ltd. The 1992 program consisted of soil geochemical sampling, prospecting, and geological mapping (Gill, 1992a; b).

1996: Eleven claims were staked on the Prime North property (in the current Prime/Gate Target Area) in 1996 by W. Gilmour for the Phoenix Syndicate. In 1997, Discovery Consultants carried out a soil sampling program on behalf of the Phoenix Syndicate (Koffyberg, 1997).

1999: In 1999, H. Adams completed two AQ diamond drill holes totalling 183 m on the Gold Core property, which is surrounded by Fairfield's Dill claims and east of the current Dillard East Target (Crooker, 1999).

2004: Bearclaw Capital Corp. (Bearclaw) acquired mineral claim 512854 over the Prime and Man targets in 2004. The Man-Prime property was optioned to Candorado Operation Company Ltd (Candorado) in 2007, who conducted soil sampling and an IP geophysical survey over 56.1-line kilometres (Koffyberg, 2007; Tilsley, 2008).

2007-2010: Discovery Consultants conducted an extended diamond drilling program over the Man-Prime property between 2007 and 2010 on behalf of Candorado. Drilling included the following: 19 DDH totalling 4,042 m in 2007; 11 holes totalling 1,988 m in 2008; and 5 holes totalling 849 m in 2010. NQ drill core size was used. The focus of the drilling was the Man and Prime mineralized zones. This drilling campaign successfully expanded the know mineralization in both zones. In addition, rock grab and chip samples were collected, and a petrographic analysis was performed on several 2007 core samples (Koffyberg and Gilmour, 2010).

2008: The DILL 2 claim was transferred to Almaden Minerals Ltd. (Almaden) in 2002. Almaden conducted stream sediment and rock sampling in 2008 to characterize the geochemical response of known mineralization and to explore for previously unidentified mineralization (Poliquin and Ullrich, 2008).

2010: In 2010, M. Adam and F. LaRoche staked 17 claims in the Dillard East area and optioned them to Fjordland Exploration Ltd. (Fjordland). Almaden optioned the adjacent DILL 2 claim (249368) to Fjordland in 2012, who collectively refer to the combined claims as the Dillard property.

2011-2015: Between 2011 and 2015, Fjordland completed five programs on the Dillard property. The 2011 program consisted of prospecting and rock geochemistry over the Dillard East Area to verify historical soil anomalies (Peters, 2011). Susceptibility measurements of 1991 drill core and ground magnetic and IP geophysical surveys were undertaken in 2012 (Peters, 2012).

In 2013, Fjordland completed seven DDH totalling 2,636.1 m, a property-wide helicopter airborne magnetics/radiometrics survey, and additional ground geophysical surveys (Peters, 2014). The 2014 program included 14 DDH totalling 5,574.1 m, mechanized trenching of 10 trenches over 2,070 m, and soil sampling (Peters, 2015a). All of the Fjordland drill core size was NQ. The focus of the 2013 Fjordland drill program was to test the depth potential of mineralization at the Dillard area where historical drilling previously intersected and terminated in zones of copper porphyry mineralization and to test deep IP chargeability targets. High chargeability targets were generally found out to be related to higher pyrite concentrations. The follow up 2014 drilling program was designed to understand the geometry of geology and mineralization, and the continuity of mineralization to depth. Fjordland also tested anomalous surface copper and gold in the Dillard East area. It was concluded that the porphyry-type copper mineralization in the Dillard East area is probably at deeper levels (Peters, 2015).

Additional prospecting and geological mapping were conducted by Fjordland in 2015 (Peters, 2015b).

2012: In 2012, Candorado changed its name to Sunrise Resources Ltd. (Sunrise). Sunrise completed two DDH totalling 1,290 m on the Man-Prime property in 2013 (Murton, 2014). NQ drill core size was used. This drill program was the first to test mineralization at depth in the Prime zone, with the drillholes intersecting the outskirts of the Gate mineralization.

2018: Sunrise sold the Man-Prime property to Rene Bernard in May 2018, who consolidated it with the adjacent Dillard property he had acquired from Fjordland. He subsequently sold the consolidated Man-Prime-Dillard (MPD) Project to Dunnedin Ventures Inc. (now Kodiak Copper Corp.) in late 2018.

6.1.2 Axe

Early exploration on the Axe property dates to the 1920s. Work conducted between the 1920s and 1965 is not documented. Exploration on the Axe property from the 1960s to 2018 consisted of geological mapping, geochemical sampling, geophysical surveying, and drilling. Drilling at the historical Axe property totaled 24,177 m in 257 holes completed by previous operators between 1967 and 2018. An overview of historical Axe property soil geochemistry for copper and gold are presented in Figures 6.4 and 6.5. Historical drilling on the Axe property is presented in Figure 6.6. Refer to Section 10 for intercept tables and details regarding the historical drilling programs conducted at the Axe property.

The exploration history of the Axe property up to 2018 that is presented in this section was sourced from Kerr (2008) and Harris (2019). The Authors of this Technical Report have reviewed these sources and consider them to contain all the relevant information regarding the exploration history for the Axe property. Based on the review of available literature and data, the lead Author takes responsibility for the information presented herein.

Early exploration on the Axe property dates to the 1930s when a 30-m adit was driven into what is now known as the Adit Zone (Mehner, 1981b). Work conducted between the 1930s and 1965 is not documented.

The Axe claims were staked by J.A. Stinson in 1967, who formed Adonis Miners Ltd. (Adonis), the original owner of the property (Mehner, 1981). Most of the historical work was completed between 1967 and 1973 when Adonis optioned the property to various operators.

Figure 6.4 Axe Property Historical Soil Geochemistry (Cu)

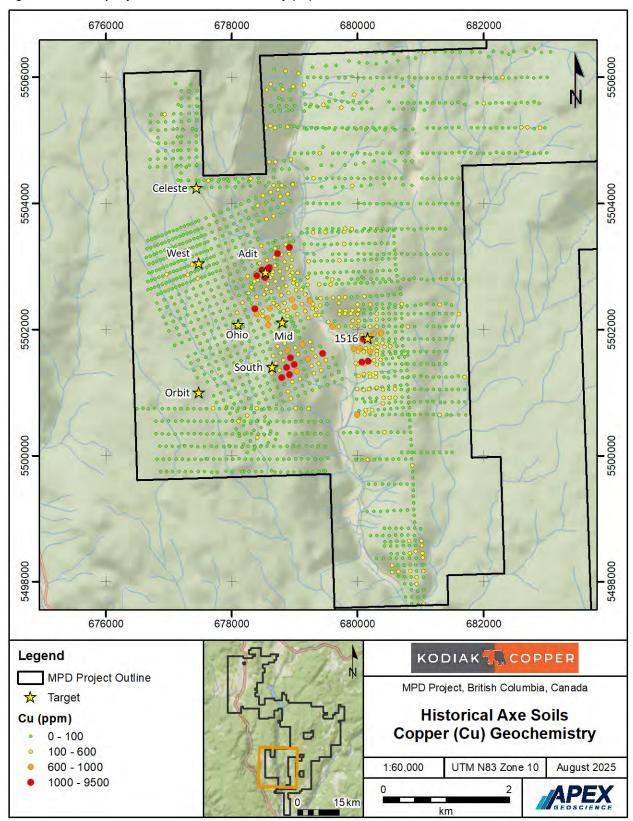


Figure 6.5 Axe Property Historical Soil Geochemistry (Au)

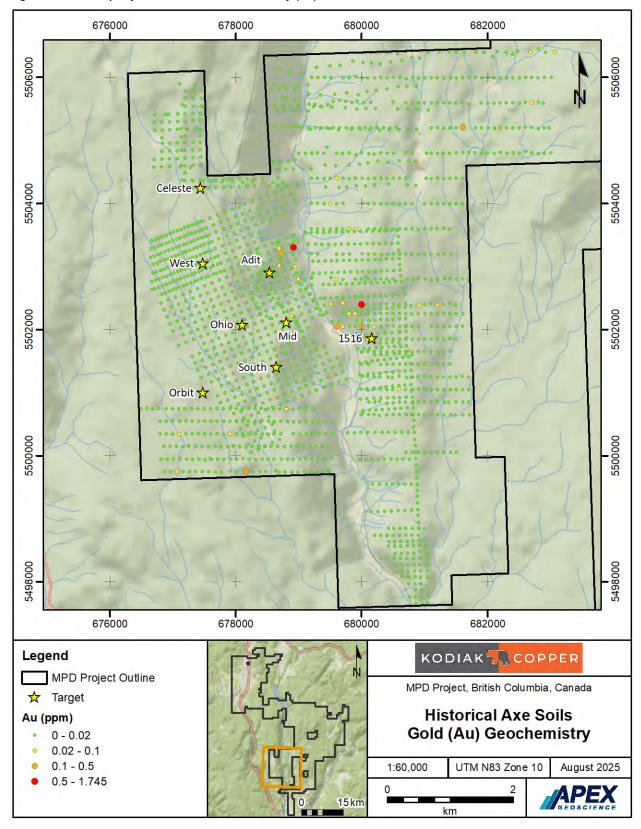
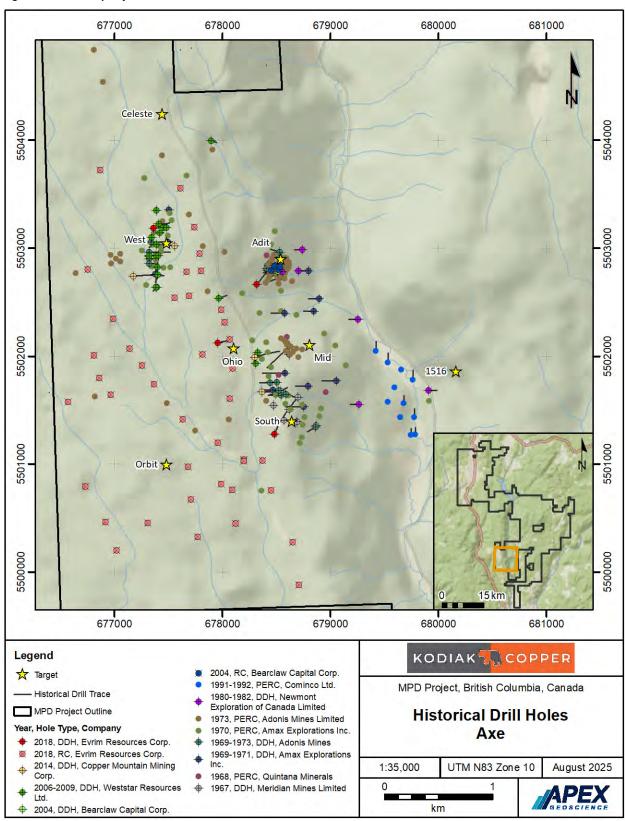



Figure 6.6 Axe Property Historical Drill Collar Locations and Drill Traces

1967-1969: In 1967, Meridian Mines Ltd. optioned the property and conducted geological mapping, geophysical and geochemical surveying, trenching, and diamond drilling (7 DDH totalling 653 m; Morton and Christoffersen, 1971). Work was followed up in 1968 by Quintana Minerals Ltd. who completed additional trenching and rotary drilling (four holes totalling 1,009 m; no records) on the South and Adit Zones. The property was handed back to Adonis, who completed an additional 270 m of drilling in 2 holes and trenching in the spring of 1969 (Mehner, 1981; Morton and Christoffersen, 1971).

1969-1971: Between 1969 and 1971, Amax Exploration Inc. optioned the Axe property and conducted geochemical and geophysical surveys, geological mapping, diamond drilling (15 holes totalling 2,730 m), and percussion drilling (approximately 50 holes for over 3,000 m of drilling) (Mehner, 1981).

1972-1973: The property was returned to Adonis Mines who conducted additional diamond drilling (22 holes totalling 3,134 m) and percussion drilling (approximately 70 holes totalling \sim 2,500) in 1972-1973. Following this, select claims were allowed to lapse with Adonis keeping the claims covering the South and Adit Zones (Mehner, 1981).

1974-1979: No exploration work was conducted on the property between 1974 and 1979; however, a regional geological study was completed in 1979 by V.A. Preto of the BC Ministry of Energy, Mines and Petroleum Resources (Preto et al., 1979).

1976-1979: Consolidated Kalco Valley Mines Ltd. conducted additional work on the eastern portion of the Axe property, east of Rampart Lake (Radvak, 1976; Trenholme, 1978; Fraser, 1979). This work comprised geological mapping, soil geochemical surveys, ground magnetics and induced polarization surveys.

1980-1983: In 1980, Cominco Ltd. acquired the property from Adonis (renamed Global Energy Corp.) by completing work programs between 1980 and 1983 (Mehner, 1982). During this time, all original claims were abandoned and re-staked as the Axe 3000, 4000, 5000 and 6000 claims, which are the current names. The exploration programs conducted by Cominco included ground geophysical surveys, rock and soil geochemistry, and diamond drilling (6 holes totalling 766 m). Additionally, 493 select portions of old drill core were analyzed (Mehner, 1982).

1991: In 1991, Cominco completed a percussion drill program (11 holes totalling 375 m) in an area of gold-in-soil anomalies (Aulis, 1991).

1994-2004: Predator Syndicate purchased the Axe claims in 1994 and held the claims for the next ten years (Harris, 2019). For a portion of that time, the claims were optioned to Causeway Mining Corp, who conducted an induced polarization survey, geological mapping, and an updated resource calculation (Kerr, 1998).

2004-2009: In 2004, Bearclaw Capital Corp. acquired the property and completed a drill program: 3 diamond drill holes (297.8 m; Gilmour, 2004) and 4 reverse circulation drill holes (298.8m; Gilmour, 2005), before optioning the property to Weststar Resources Ltd. (Weststar) (Kerr, 2007). Between 2005 and 2007, Weststar completed an updated historical resource calculation (see Section 6.3), a 3D IP survey covering 34 km, and 3,401 m of diamond drilling in 14 holes. The SWAN claims were staked in 2006 which added an additional 2,008 ha to the eastern side of the property. A limited drilling program focusing on the West and South Zone, totalling 503 m in 4 holes, was completed in 2009 (Fraser, 2009).

2008: Kerr completed a report on behalf of Weststar which excluded the 2006/2007 drilling. The report included a historical mineral resource estimate which was not calculated in accordance with the standards set forth in NI 43-101 and Canadian Institute of Mining (CIM) Definition Standards for Mineral Resources and Mineral Reserves (May 2014) and CIM Estimation of Mineral Resources & Mineral Reserves Best Practices Guidelines (November 2019) (see Section 6.3).

2012: The property was then optioned to Xstrata Canada Corp in 2012. The 2012 exploration program consisted of soil and rock sampling over the eastern portion of the property, and southwest corner south of existing resource zones, as well as a group induced polarization survey (Rosset and Maxwell, 2013).

2014: In 2013, Copper Mountain Mining Corporation (Copper Mountain) optioned the Axe property from Bearclaw. The geophysical anomalies at the South, West and Adit zones were tested by a 1,500 m drill program in late 2014 (BC Ministry of Energy and Mines, 2015).

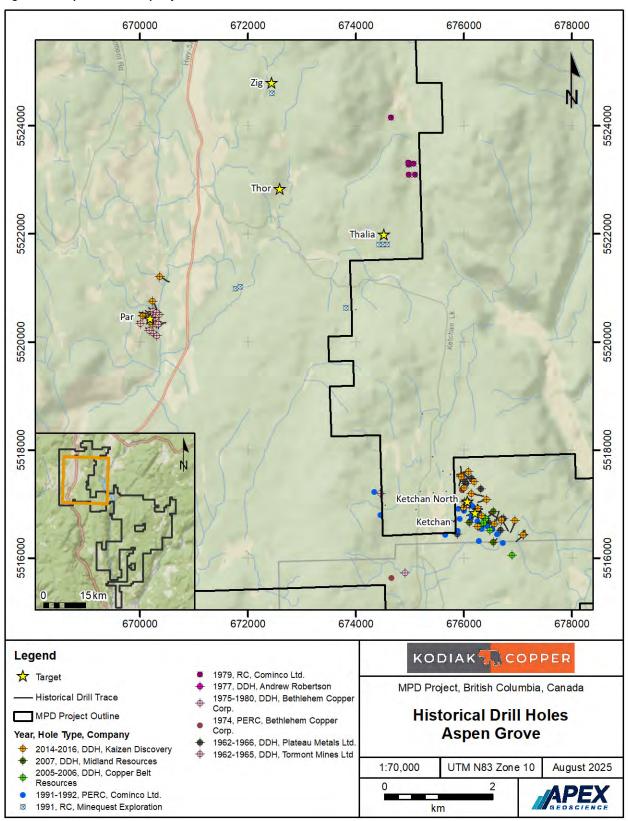
2017: In 2017, Evrim purchased the Axe property and conducted a program of re-logging of all available historical drill core and a re-interpretation of the structural, geologic, and alteration framework (Razique and Harris, 2018). This reinterpreted geologic framework was combined with an inversion of the 2012 airborne magnetic data to identify targets for follow-up drill testing.

2018: Exploration during the 2018 field season by Evrim on the Axe property consisted of geological mapping and reverse circulation and diamond drilling (Harris, 2019). Geological mapping was carried out at the 1516 and Adit Zones as well as on the till-veneered plateau encompassing and west of the South and West Zones. The RC drilling program was designed to test the till-to-bedrock interface over a 4 x 3 km area with particular focus on areas with high magnetic anomalies. RC drilling totaled 695 m in 39 holes, from which 28 samples were selected for petrographic study. A total of 2,114 m of diamond drilling was completed in four holes: one hole each in the West, South, Adit and Ohio zones.

6.1.3 Aspen Grove

The Aspen Grove area has been prospected since early 1900 when discoveries of high-grade copper were made near the settlement of Aspen Grove, about 7 kilometres north of the original MPD claims. Exploration on the Aspen Grove property from the 1960s to 2016 consisted of geological mapping, geochemical sampling, geophysical surveying, and drilling. A total of 116 holes totalling 221,649 metres were drilled at the historical Aspen Grove property between 1962 and 2016. Historical drilling on the property is presented in Figure 6.7. Refer to Section 10 for intercept tables and details regarding the historical drilling programs conducted at the Aspen Grove property.

The following summary of the documented exploration history of the Aspen Grove property was extracted from Peterson and Luckman (2016) with information sourced and modified from Bergey (2009). The Authors of this Technical Report have reviewed these sources and consider them to contain all the relevant information regarding the exploration history for the Aspen Grove property. Based on the review of available literature and data, the lead Author takes responsibility for the information presented herein.


6.1.3.1 Property Scale

An airborne magnetic and radiometric survey over the Aspen Grove property was conducted in 2014. The survey block covered an area of approximately 15 by 10 km, and a total of 1,621-line km were flown at a 100-metre spacing in an east-west direction. Interpretation of the magnetic data supported the notion that the Aspen Grove area consists of three main structural blocks separated by north trending arc-parallel regional fault systems, the Allison (Otter Creek) Fault and Kentucky-Alleyne Fault (Preto, 1979).

Figure 6.7 Aspen Grove Property Historical Drill Collar Locations and Drill Traces

6.1.3.2 Par Area

1962-1965: Tormont Mines Ltd. completed 2,759 metres of diamond drilling in 16 holes, ostensibly to test a skarn Cu showing west of Otter Creek (Coutts et al., 1962-1965). Drilling intersected significant mineralization in 13 out of 17 drill holes over a 250 by 250 m area. Comparison of logs and core assays suggests that many mineralized intervals were never assayed. The longest continuously assayed interval recorded a core length intersection of 0.86% Cu and 44 g/t Ag over 20.42 m (110.03 to 130.45 m depth) in drill hole H-27. Drill hole H-29, collared about 65 m northwest of H-27, included three continuously assayed core length intervals within a 56 m intersection: 0.73% Cu and 31 g/t Ag over 10.67 m (23.16 to 33.83 m), 0.41% Cu and 26 g/t Ag over 15.24 m (38.1 to 53.34 m) and 0.32% Cu and 9 g/t Ag over 9.15 m (70.1 to 79.25 m). Three gold assays of 0.03 ounces per ton (1 g/t) over 1.52 m each are recorded in this hole. Mineralization occurs as disseminations and veins to semi-massive sulphide, comprising pyrite, chalcopyrite, bornite, magnetite and hematite.

1970: Andrew Robertson completed a vertical diamond drill hole to a depth of 123 metres at the site of the original showing (Cryderman, 1977).

1998-2004: W.R. Bergey carried out detailed mapping supplemented by magnetometer and VLF-EM surveys (Bergey, 2000; 2001; 2002; 2004).

2013: Reconnaissance mapping and sampling completed by West Cirque Resources identified silicification, brecciation and advanced argillic (silica-pyrite-clay) alteration over a strike length of 800 m. The alteration is associated with quartz-feldspar porphyries that were interpreted as possibly part of a cupola phase of the Allison Lake stock. An additional 200 metres strike length to the zone of porphyry style alteration is inferred from iron-rich ferricrete deposits, some of which consist almost entirely of silica clasts.

2014: SJ Geophysics conducted a three-dimensional induced polarization (IP) survey of the Par area using their proprietary Volterra system. The survey consisted of 25 east-west lines, each 1,600 m in length and spaced 200 m apart. Two main zones of anomalous chargeability were defined. At surface, one zone is coincident with a small magnetic high corresponding to a magnetite breccia. A four-hole, 2012 m drilling program was also conducted by Kaizen Discovery (Bradford et al., 2015a; 2015b). Drilling intersected broad intervals of strong quartz-sericite-pyrite to advanced argillic alteration in a mainly felsic volcanic-intrusive sequence which has limited outcrop expression. Drill hole AG14-01 intersected multiple intervals of strong sulphide mineralization containing anomalous but subeconomic levels of Cu + Zn + Au + Ag mineralization, along with minor molybdenum and lead and locally anomalous bismuth and arsenic. Approximately 190 m. north of AG14-01, drill hole AG14-02 was collared adjacent to mineralized outcrops of polymictic breccia believed to represent a diatreme related to a largely buried porphyry system. This drill hole intersected the breccia and an underlying dioritic intrusion cut by polyphase magnetite, hematite, pyrite-chalcopyrite and quartz-pyrite-molybdenite veins typical of an alkalic porphyry system. This alkalic intrusive and breccia complex intrudes a thick sequence of phyllic to chlorite-sericite altered felsic volcanics. Two additional drill holes stepping out to the north of AG14-02 intersected similar felsic volcanic sections with strong phyllic and lesser advanced argillic alteration and strongly silicified and pyrite altered intervals.

2015: One drill hole (AG15-01) was completed to test a strong chargeability anomaly, completed to 459 m at 110/-50. The drill hole intersected 73.2 m core length (1.8 to 75 m depth) of 0.24% Cu and 0.10 g/t Au, associated with magnetite + pyrite +/- specular hematite cemented hydrothermal breccia and microbreccia. In addition, ground-truthing was conducted in the areas surrounding Par.

6.1.3.3 Ketchan Lake Area

1962: Plateau Metals Ltd. staked the present Ketchan Lake prospect area. Later the same year, they carried out a magnetometer survey and completed 3 diamond drill holes.

1966: Adera Mining Ltd. optioned the property and carried out geological and geophysical surveys, along with 512 metres of diamond drilling and 512 metres of trenching (Lammle, 1966).

1973: Bethlehem Copper Corp. staked the Log Group of mineral claims following a large-scale regional exploration program.

1974: Bethlehem Copper carried out geological mapping and geochemical sampling, followed by drilling of 10 percussion holes (3 drill holes located within the current Aspen Grove claim block). No information pertaining to this drilling is on record.

1975: Bethlehem Copper completed 351 metres of diamond drilling in 4 holes (Anderson, 1975, 1976).

1980: Bethlehem Copper completed 410 metres in 2 diamond drill holes to test the results of an IP survey carried out earlier in the year (Anderson, 1979).

1991: Cominco Ltd. completed 15 percussion drill holes totalling 1,067 metres (12 drill holes located within the current Aspen Grove claim block) (Aulis, 1991).

1992: Cominco Ltd drilled 8 percussion holes for 640 metres (Aulis, 1992).

2005: Copper Belt Resources drilled 10 diamond drill holes for 1,210 metres.

2006: Copper Belt Resources drilled 2 diamond drill holes for 485 metres (Thomson, 2006).

2007: Midland Resources drilled 5 diamond drill holes for 931 metres (4 drill holes located within the current Aspen Grove claim block) (Thomson, 2007).

2013: Reconnaissance mapping and sampling was completed by West Cirque Resources. West Cirque's twelve representative trench and outcrop grab samples over a strike length of 300 metres from the northwest end of the Ketchan mineralized zone assayed 80 ppm to 1.07% Cu, <1 to 458 ppb Au and <0.2 to 52.5 g/t Ag.

2014: Geological mapping was carried out by West Cirque Resources in the Ketchan Lake area in June 2014. Additional detailed mapping was completed in the Ketchan Lake area by consultant James Logan in September 2014. A total of 397 geological stations were documented in addition to the 335 stations from 2013. Results of mapping are described in Logan (2014) and Bradford et al. (2015a; 2015b).

2015: In early 2015 mapping and ground truthing were conducted throughout the Ketchan Lake area. Mapping in the Ketchan area documented widespread chalcopyrite mineralization primarily associated with magnetite in potassic/calc-potassic altered diorite. Thirteen diamond drill holes (two of which required three attempts to complete) were completed, targeting various mineralized areas of the Ketchan Stock.

2016: Ketchan prospect was tested in 2016 by 8 diamond drill holes. Targeting of drill holes was based on outcrop mapping and sampling carried out in 2013 and 2014, as well as geophysics and previous drilling. A new geological model was developed as part of the 2016 drilling campaign. As part of this study, re-logging of drill core, lithogeochemical sampling and thin section petrographic study was completed.

6.1.3.4 Coke Area

1962: The Coke prospect, in the southeastern corner of the Aspen Grove property was discovered in 1962 by Plateau Metals Ltd.

1963-1976: Between 1963 and 1976 numerous geological, geophysical and geochemical soil surveys were carried out on the Coke prospect by Plateau Metals, Adera Mining, Amax Exploration, Kalco Valley Mines and Ruskin Developments. Two diamond drill holes totalling 229 metres and three percussion holes totalling 235 metres were drilled by these companies between 1966 and 1972. This drilling data is not within the current MPD Project drill database.

1980-1987: Geophysical and soil and rock geochemical surveys were conducted by Cominco Ltd. in 1980, P. Peto in 1985 and Mingold Resources in 1987. The work on the Coke Prospect was carried out in conjunction with exploration that also included the Rum prospect, located about one kilometre to the south (Mark, 1976; Mehner, 1981; Peto, 1985; Yarrow, 1987).

2013: Reconnaissance mapping and sampling of the Coke area was completed in 2013 by West Cirque Resources. Mapping and sampling along two 100+ metre long trenches within a microdiorite intrusive body at the Coke prospect was hampered by snow and water. West Cirque's four trench and outcrop grab samples from the zone assayed 87 ppm to 0.652% Cu, 7 to 233 ppb Au and 0.5 to 52.2 g/t Ag.

6.1.3.5 Zig, Thalia, Thor

1979: Cominco Ltd. drilled 6 percussion holes, based on property scale mapping IP ground magnetic and geochemical surveys. Only two holes reached bedrock, both intersecting altered diorite. One hole at the Thalia prospect averaged 0.141% Cu over 32 m core length (Mehner, 1979).

1985: Vanco Exploration carried out geochemical and geological mapping (Lisle, 1985).

1988: Laramide Resources carried out a geochemical survey for gold (Watson, 1988).

1990-1991: Minequest Exploration carried out 56 kilometres of IP geophysical surveying. Rayrock Yellowknife Mines drilled 9 percussion holes on the Minequest property (7 drill holes within the current Aspen Grove claim block). No significant Cu or Au values are reported; however, an untested copper prospect on the Zig 3 claim was noted (Gourlay, 1990; 1991).

2005: Geological mapping, electromagnetic (VLF) and magnetic surveys were carried out by William Bergey for Copper Belt Resources (Bergey, 2005)

2013: Reconnaissance mapping and sampling completed by West Cirque Resources examined the Zig 3 prospect, which is exposed in outcrops, trenches and a small shaft, over a strike length of at least 155 metres. West Cirque's six representative trench and outcrop grab and chip samples from the Zig 3 zone assayed 181 ppm to 1.265% Cu, 1 to 11 ppb Au and <0.2 to 6.4 g/t Ag.

2014: Prospecting was carried out in the Zig, Boss, and Thalia areas.

2015: Prospecting was conducted around the Zig area. A set of old trenches was discovered about 180 metres west of the previously examined Zig showing. The "new" chalcocite-bornite showing was termed the "Zag" showing. A number of mineralized zones with characteristics similar to the Zig and Zag were identified approximately 1.2 km to the east-northeast of the Zig; this was termed the "Zog" showing. A petrographic

study was also carried out on samples from the three showings; a complex diatreme-like system was postulated.

6.2 Historical Mining

Widespread prospecting and exploration in the Princeton-Merritt area at the turn of the 20th century, spurred by the rising value of copper, resulted in mineral discoveries in the Project area. This activity led to the commencement of small-scale mining at Copper Mountain, south of Princeton. Evidence of historical mining on the MPD Project is limited to a 30-metre adit in the Adit Zone. Any additional work from 1920-1965 is not documented (Kerr, 2008).

6.3 Historical Mineral Resource Estimates

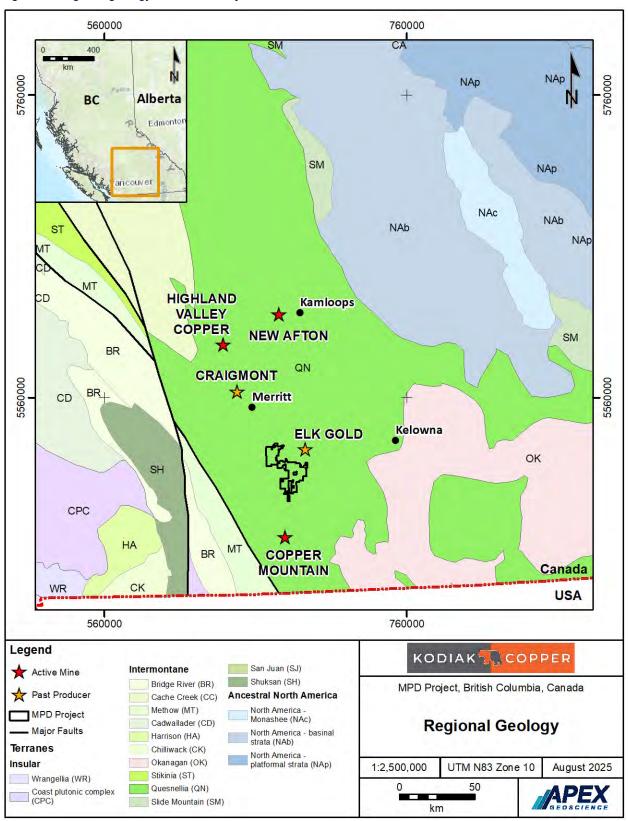
Historical mineral resource estimates have been reported for the Axe property by Amax Exploration Inc. in the early 1970s, Adonis Mines in 1973, and Weststar Resources Ltd. in 2008 (Kerr, 2008). The historical mineral resources and reserves were not calculated in accordance with the standards set forth in NI 43-101 and Canadian Institute of Mining (CIM) Definition Standards for Mineral Resources and Mineral Reserves (May 2014) and CIM Estimation of Mineral Resources & Mineral Reserves Best Practices Guidelines (November 2019). The historical mineral resources and reserves were not completed by the current Issuer. The historical mineral resources are not considered reliable due to lack of supporting data and are not disclosed herein.

A current Mineral Resource for the MPD Project is detailed in Section 14 of this Technical Report.

7 Geological Setting and Mineralization

7.1 Regional Geology

The MPD Project is located within the Quesnel Terrane of the Intermontane Tectonic Belt which is a series of volcanic arc terranes that are interpreted to have accreted to North America in the Mesozoic era (Figure 7.1; Mihalynuk et al., 2014). The Quesnel Terrane extends from the Canadian border to north of Kamloops and is dominated by alkalic and calc-alkalic island-arc volcanics and co-magmatic intrusives of the Upper Triassic Nicola Group.


The central part of the Nicola Group, between Merritt and Princeton, has been subdivided into three subparallel structural belts that are separated by two northerly trending fault systems: the Summers Creek Fault system to the east and the Allison Fault system to the west (Preto, 1979; Preto and Koffyberg, 2009). The faults are large, steeply dipping structures that are believed to be responsible for the emplacement of a north-south trending package of volcanic and intrusive rocks with peripheral sedimentary basins on both the east and west (Preto, 1979). Porphyritic monzonite and diorite stocks are associated with the volcanic centres and are related to copper-gold mineralization in the area. The faults were active before, during, and after the mineralizing events.

The three structural belts are referred to as the Western, Central, and Eastern Belts (Preto, 1979) and are characterized by genetic and chemical differences between the rock assemblages. The Summers Creek and Alleyne faults mark the contact between the alkali and calc-alkaline volcanics/intrusives of the Central belt and the sandstones, siltstones, conglomerates, and tuffaceous volcanics in the Eastern belt. On the western side, the Allison fault separates the Central belt from the Western belt, which consists of calc-alkaline andesite to rhyolite volcanic flows, tuffs, and clastic sediments with minor limestone. A recent reinterpretation of Nicola Group stratigraphy by Mihalynuk and Diakow (2020) defines the group as lithostratigraphic units based on isotopic age determinations rather than the previous "structural belt" synthesis. In the new interpretation, a number of formations can be seen to straddle the traditional belt boundaries, and it is the revised classification of these new formations that will be referenced in the Project Geology section of this report.

Figure 7.1 Regional geology of the MPD Project

7.2 Property Geology

The majority of the Project is underlain by Middle to Upper Triassic layered rocks of the Elkhart and Iron Mountain formations while the south and eastern areas are dominated by Jurassic-age intrusive rocks of the Nelson suite (Figure 7.2). Minor occurrences of Jurassic, Cretaceous, and Eocene volcanics and Late Triassic intrusive rocks are also seen in the southern and central areas of the Project, respectively. The rock codes referenced below are consistent with those presented in the British Columbia Geological Survey - Geoscience Map 2020-01 (Mihalynik and Diakow, 2020).

Layered Rocks

Nicola Group

Iron Mountain Formation

The oldest volcano-sedimentary sequence in the project area is the Iron Mountain Formation. The unit is interpreted to be up to 1.5 kilometre thick and is comprised of basalt and andesite flows and tuffs (uTrNIvpy and uTrNIvmi) overlain by tuffite (uTrNIvs) and sediments consisting of sandstone, siltstone, and conglomerate (uTrNIsw). The volcanics are typically dark green when fresh, exhibit reddish sections when oxidized, and are dominated by plagioclase ± augite. Textures vary widely from aphanitic/amygdaloidal to medium grained and porphyritic. The tuffite is reworked and well bedded exhibiting fine lapilli in crystal-ash. The sedimentary sequences are tan to green in colour and can be massive, graded, or cross-bedded.

Elkhart Formation

In the Project area, the Elkhart Formation unconformably overlies the Iron Mountain Formation. Four units of the Elkhart have been identified on the Project. The oldest unit comprises sediments of the Harmon conglomerate (uTrHEHscp) which marks a notable unconformity that spanned from 240 to 210 Ma. The Harmon is distinguished by a reddish oxidized groundmass and limestone fragments. Unconformably overlying the Harmon are basalt and andesite flows (uTrNEvmi.xhb), which exhibit amygdaloidal and porphyritic textures defined by plagioclase, augite, and hornblende. The upper units are massive sedimentary sequences consisting of feldspathic sandstone/siltstone (uTrNEss) and sandstone/conglomerate with andesite porphyry flows (uTrNEscp). The clast lithologies observed in the late polymictic conglomerate are entirely consistent with those of the Nicola group and associated plutons. They are dominated by volcanics, monzonite, and diorite.

Skwel Peken Formation

In the extreme southern portion of the Project, three occurrences of the Skwel Peken Formation have been observed: an earlier conglomerate unit which commonly includes tuffaceous layers (mJSscp), andesite breccia (mJSva.tx), and a later volcanic suite of rhyolite flows (mJSvr) that have been dated at 163 Ma. The units are marginal to the Osprey Lake Batholith and are interpreted to be extrusive events related to the emplacement of the batholith.

Spences Bridge Group

Pimainus Formation

The Spences Bridge Group is a Lower Cretaceous volcanic sequence laid down by intermittent volcanic and sedimentary depositional events. The sediments in the project area represent the oldest

Figure 7.2 Property Geology

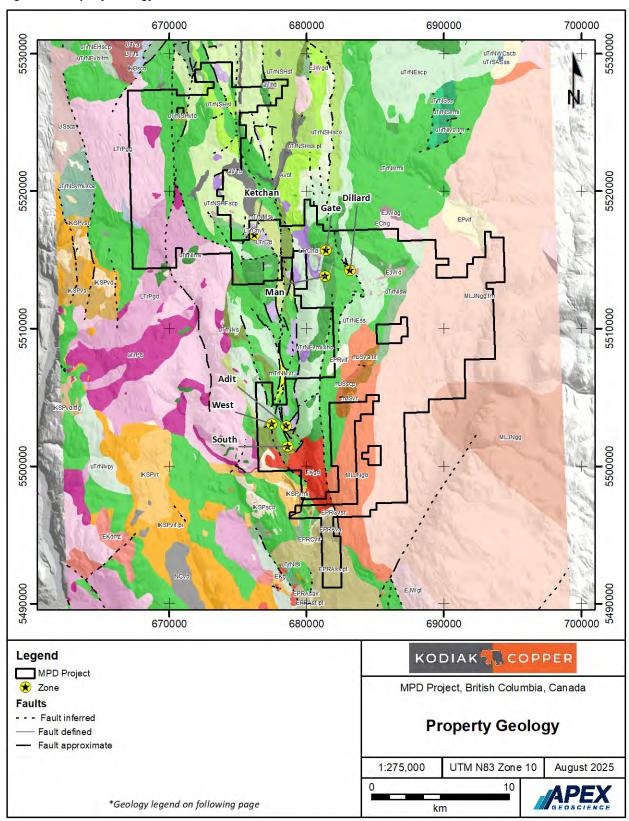


Figure 7.2 (Cont.) Geology Legend

unit in the formation and consist of polymictic conglomerate with sandstone and siltstone interbeds (IKSPscb). The clasts in the conglomerate are composed of the underlying Nicola Group as well as the base of the Pimainus Formation. Later plagioclase-rich basaltic and andesitic flows (IKSPvmi), commonly porphyritic, overly these sediments. The flows are very similar to the volcanics of the Iron Mountain Formation.

Princeton Group

An occurrence of Eocene-aged dacite and rhyolite (EPRvif) was mapped in the south overlying the Elkhart volcanics and Osprey batholith. Smaller dacite dykes were also noted crosscutting earlier

diorite and monzonite dykes of the Wildhorse Suite in a few locations; however, this dacite unit has not been dated to confirm it is a member of the Princeton Group.

Intrusive Rocks

Mount Pike suite

The oldest intrusive rocks on the Project are related to the Allison batholith located to the west. The suite consists of diorite and granodiorite (LTrPd/LtrPgd). The diorite is interpreted as the oldest phase (>223 Ma).

Copper Mountain suite

The Copper Mountain suite is Upper Triassic in age and, in the Project area, comprises diorite (LTrCd) and monzonite/syenite (LTrChd). The earlier dioritic unit is mostly present on the southwestern portion of the Project. The monzonite and feldspar porphyry related to the LTrChd unit are seen to intrude the Elkhart Formation in close proximity to the southern end of Missezula Lake. The intrusions commonly form easterly-trending porphyry dykes, which vary in width from 1-10 m. Mineralogy is typically plagioclase, potassium feldspar, augite, and hornblende, ± magnetite.

Mineralization on the Project is commonly associated with these intrusive units, often in brecciated and hydrothermally altered zones that exhibit typical porphyry alteration suites including potassic, propylitic, and phyllic zones. The sulphide mineralogy present in these zones is pyrite, chalcopyrite, and lesser bornite is present with alteration mineral assemblages composed of chlorite, epidote, sericite, magnetite, hematite, K-spar, albite, garnet, and biotite. Copper mineralization is typically concentrated in multi-centimetre wide quartz veins, veinlets, or stockwork and as pyrite-chalcopyrite filling in fine fractures; however, it can also be present as fine disseminated mineralization associated with epidote in zones of propylitic alteration.

Wildhorse suite

Two Early Jurassic intrusive units associated with the Pennask batholith are observed intruding the Elkhart Formation throughout the central portion of the Project. The earliest unit consists of diorite, quartz diorite, monzonite, and locally gabbro (EJWd). It typically takes the form of small stocks and dykes. The bodies are medium grained and porphyritic, with abundant hornblende and feldspar and accessory biotite phenocrysts. The second unit is a medium- to coarse-grained tonalite to quartz diorite (EJWgt), which is seen as larger stock-like bodies where it has been identified.

Nelson suite

The Osprey Lake batholith is a very large intrusive complex that was emplaced in the Middle to Late Jurassic. The intrusion underlies the eastern portion of the Project and extends 70 kilometres to the east. The predominate lithology is a medium- to coarse-grained granite-granodiorite (MLJNgg.tm). Border phases of granodiorite, quartz diorite, and quartz monzonite (MLJNgd) are also present in the southern area of the Project.

Early Cretaceous

Late intrusives of granodiorite, quartz monzonite, and granite (Ekgd) are present in the southern portion of the Project. These intrusives are assumed to be associated with the Summers Creek Pluton; however, they are poorly exposed and are presently not well understood as they lack dates.

7.2.1 Structural Geology

The Project area is cut by a complex structural framework of steeply dipping pre-, syn- and post-mineralization faults that reflect multi-phase deformation and fault reactivation. Mihalynuk et al. (2016) report that the Nicola arc strata were deformed at least three times: 1) uplift between 208-201 Ma, 2) fold and thrust deformation (between 201-185 Ma) when the Quesnel terrane was docking at the margin of North America, and 3) thrust fault development (between 134 to 104 Ma) possibly related to docking of the Insular Superterrane.

Regional, long-lived northerly fault zones follow Summers and Allison creeks. The northwest-trending Summers Creek fault system is present along the west side of the Project and is interpreted as the earliest formed pre-mineral fault with jogs and splays that have facilitated pathways for porphyritic intrusions and resultant porphyry copper mineralization in the area (Kerr, 2008). The faults associated with the Gate, Dillard and Man zones are interpreted to be an adjacent splay related to the Summers Creek fault.

North and northeast-strands of the Allison Fault crosscut and deform the eastern margin of the Allison batholith. The lateral offset along the Allison fault strands cannot be estimated with certainty but is estimated to be less than 10 km (Mihalynuk et al., 2015). An \sim 4 km, southwest-trending strand of the Allison Fault is located at the Par showing. It forms a ductile-brittle shear zone that apparently defines the eastern boundary to mineralization. The fault zone is 0.5-0.7 km wide and parallels Otter Creek.

7.3 Mineralization

A total of 54 mineral occurrences were registered at the B.C. Government's MINFILE database on the MPD Project. This report will focus on the 7 most developed and drill tested mineralized zones: Gate, Man, Dillard, Ketchan Lake, West, South, Adit. Copper, gold and silver mineralization within these zones are interpreted to be porphyry related.

7.3.1.1 Gate Zone

Gate Zone comprises a two-phase porphyry intrusion system that displays high-grade copper and gold mineralization. The intrusive rocks range in composition from quartz monzonite to monzodiorite and are members of the Copper Mountain and Wildhorse magmatic suites. A high-grade center is found below approximately 200 metres, with the top of the system covered by lower grade andesitic volcanics.

The first porphyry phase is characterized as a packed, seriate to equigranular, subhedral to euhedral, grey, pale green, monzodioritic intrusive with white feldspar phenocrysts, along with 10% hornblende and pyroxene phenocrysts. U-Pb zircon dating conducted by Kodiak returned an age of 199.66 Ma ± 0.91 Ma.

The second porphyry phase is a fine-grained, crowded, seriate, feldspar-porphyritic monzodioritic intrusive composed of 80% grey and white subhedral to euhedral feldspar phenocrysts and 5% hornblende and pyroxene. This phase appears as dyke-like bodies, typically ranging in size from a few metres to less than 100 metres in width. Hydrothermal breccia zones commonly exhibit intense alteration, with clasts assumed to be derived from the earlier intrusion. Structurally, a well-defined, steeply dipping, NNE-trending fault controls the emplacement of the second intrusive phase and the associated mineralization. This fault was subsequently reactivated with dextral displacement, most likely during Cretaceous tectonism.

U-Pb zircon dating by Kodiak indicates an age of 195.43 ± 0.95 Ma for the second phase intrusion, which closely matches a molybdenite Re-Os mineralization age of 195.2 ± 0.8 Ma. Although molybdenite is not

present in significant quantities, it is commonly observed together with chalcopyrite in veins. The spatial and temporal relationship between chalcopyrite and molybdenite suggests that mineralization is likely synchronous, therefore, the mineralization and causative intrusion ages at Gate are interpreted to be the same at approximately 195 Ma, about 4 Ma old younger than the first porphyry phase.

High-grade copper and gold mineralization at Gate is concentrated along the contacts between the two porphyry phases. These zones exhibit strong silicification and potassic alteration (K-feldspar+biotite+magnetite) overprinting earlier propylitic assemblages (epidote and actinolite). Both disseminated and vein-hosted mineralization are present, but the highest copper and gold values are associated with a multi generational stockwork of sheeted quartz veins. The predominant copper sulphide is chalcopyrite, but significant amounts of bornite can also present in the high-grade intervals. The Gate zone also shows a well defined phyllic overprint, which can remobilize and destroy existing mineralization. QSP (quartz-sericite-pyrite) veins associated with this late-stage alteration occasionally bring additional gold into the system.

The Prime Zone is situated to the north-east of the Gate zone and is currently interpreted as an extension of the mineralization at Gate Zone hosted in volcanic rocks.

7.3.1.2 Man Zone

Copper-gold mineralization in the Man Zone is primarily hosted in variably to intensely altered, medium-grained, porphyritic monzodiorite, with lesser amounts occurring in andesitic volcanic rocks of the Upper Triassic Nicola Group. Multiple intrusive phases intersect in a complex cross-cutting pattern.

Alteration is dominated by potassic and phyllic assemblages, where sericite-gypsum-carbonate alteration overprints earlier K-feldspar alteration. The latter is believed to be magnetite and sulphide destructive.

Copper sulphide mineralization occurs mainly as chalcopyrite, with minor bornite, and is present as disseminations, stringers, and veinlets. Copper mineralization was also observed along the selvages of late gypsum veinlets, suggesting vein reopening or remobilization. High-grade copper and gold mineralized intervals at the Man zone is characterized by localized strong potassic alteration (K-feldspar+biotite+magnetite) and hydrothermal breccia sections.

Additionally, mineralization at Man is crosscut by a set of NW-striking, steeply NE-dipping, barren, coarse-grained late monzonitic dykes. While the role of these dykes and their emplacement age in the mineralizing system remains uncertain, elevated gold values are frequently observed in the adjacent country rock.

7.3.1.3 Dillard Zone

Copper and gold mineralization at Dillard is hosted within fine-grained andesitic to basaltic flows and fragmental volcanic units which are contemporaneous with sub-volcanic, fine grained units having diorite to granodiorite compositions and that typically form small intrusions or dyke swarms. Post-mineralization, barren dykes are also present and locally crosscut the mineralized sequence.

Alteration is dominated by pervasive sericitic and propylitic assemblages in both volcanic and intrusive rocks. Argillic alteration is localized along fault zones and areas of intense fracturing. Irregular patches of potassic alteration (K-feldspar) are also observed.

Pyrite and chalcopyrite are the dominant sulphide minerals hosted in both intrusive and volcanic rocks. Pyrite occurs in veinlets and as fine- to medium-grained disseminations. Chalcopyrite is present as fracture

coatings, disseminations, and fine veinlets. Potassic alteration coincides with high chalcopyrite concentrations. The highest grade sections are usually found at the contact between the sub-volcanic intrusions and country rock volcanics.

7.3.1.4 Ketchan Lake Zone

The Ketchan Lake area was mapped by James Logan in September 2014 (Logan, 2014 and 2016). According to Logan:

The Ketchan lake prospect is hosted in the Ketchan intrusive complex a 1x2 km northwest-trending alkalic intrusive complex comprised of monzogabbro, diorite and monzonite porphyry plugs, dikes and hydrothermal breccias. Fracture-, breccia-, vein-, and minor disseminated Cu, Au, ± Pt, Pd mineralization occupies the main intrusive complex. Pb and Zn values accompany sulphide mineralization and are highest peripheral to the main intrusive complex at the southeast and northwest ends.

The age of the Ketchan stock and mineralization is assumed to be Late Triassic and correlated with similar alkaline intrusive and mineralized centers know in southern Quesnellia (i.e. Copper Mountain, New Afton, Mount Polley). The continuity between pyroxene-biotite diorite to hornblende monzonite phases at Ketchan is similar to the pyroxene-biotite diorite (Pothook phase) and hornblende monzonite (Cherry Creek phase) that comprise the Iron Mask batholith at Kamloops (Logan and Mihalynuk, 2005). The late(?) prismatic hornblende porphyry diorite could have an analogy with the Sugarloaf diorite as well however we don't see a lot of albitic alteration in outcrop. The albite-actinolite-sphene-epidote (alteration) assemblage may be a sodic-calcic alteration akin to that present at Yerington/Ann-Mason (Dilles and Einaudi, 1992).

Five principal alteration types have been recognized in the drill core at Ketchan. These are potassic (K-spar dominant), calcic or calc-potassic (actinolite-epidote), sodic (albite-epidote), phyllic (sericite-ankerite) and propylitic (epidote-chlorite-pyrite). The alteration assemblages overlap and cross-cutting relationships suggest conflicting paragenetic sequences from one intrusive phase to another. However, in general potassic alteration precedes calc-potassic, sodic and propylitic alteration with phyllic a later overprint. Copper and gold mineralization accompany potassic, calcic and sodic alteration but not everywhere nor to the same tenor.

The alteration/mineralization paragenesis comprises a complex sequence of potassic, calc-potassic and sodic to propylitic alteration that was in turn overprinted by fault(?) controlled phyllic assemblages. Copper and gold mineralization occurs associated with the potassic to calc-potassic alteration assemblages. Sodic alteration is lithology limited and/or under recognized. Alteration zonation is not evident from the limited drill hole information.

7.3.1.5 West Zone

Copper and gold mineralization in the West Zone is hosted within diorite porphyry, andesitic volcanic rocks, and heterolithic volcaniclastic breccia, all part of the Upper Triassic Nicola Group. These volcanic units are intruded by narrow, syn-volcanic, dioritic dykes and larger diorite porphyry bodies.

Alteration in both the Nicola volcanic rocks and the early diorite porphyry is characterized by calcic-potassic assemblages, consisting of pervasive epidote, magnetite, actinolite, K-feldspar, and gypsum. The associated sulphide mineralization is predominantly chalcopyrite, with subordinate pyrite and minor bornite. Copper sulphides occur as disseminations and veinlets and are spatially associated with epidote and magnetite. Gold is commonly associated with QSP veins and phyllic alteration.

In the highest-grade intervals, chalcopyrite occurs in close association with magnetite, which can locally comprise over 50 vol% of the host rock. This suggests a magnetite-rich, skarn-style mineralization that is also often enriched in gold. Alteration intensity and copper grades increase toward the diorite porphyry intrusions, with higher concentrations of both chalcopyrite and magnetite near the core of the system.

7.3.1.6 South Zone

The South Zone consists of altered and mineralized volcanic rocks situated adjacent to weakly mineralized and altered, coarse-grained monzonite porphyry stocks. At least two phases of monzonite porphyry have been identified. In this zone, mineralization is predominantly copper, with a lesser gold and molybdenum.

A relatively simple alteration zonation pattern is developed around the porphyry bodies, transitioning from outer propylitic alteration in distal zones (characterized by pyrite > chalcopyrite) to inner propylitic and localized potassic alteration, where pyrite \leq chalcopyrite. The monzonite stocks contain a well-defined potassic core.

Most of the copper mineralization is associated with chalcopyrite, which occurs within inner propylitic alteration assemblages consisting of magnetite, actinolite, and epidote, as well as in veinlets and rarely with quartz-chalcopyrite-pyrite+/- molybdenite veins. Potassic alteration zones within the porphyry contain low copper grades. The potassic core within the porphyry stock is characterized by the presence of strong potassic alteration (K-feldspar) and copper-poor blue quartz veins with molybdenite.

Mid zone is situated between South and Adit zones. The mineralization style is interpreted to be similar to the South zone and is currently regarded as the northern extension of the South Zone.

7.3.1.7 Adit Zone

The Adit Zone comprises a two-phase diorite porphyry intrusion system hosting mainly copper mineralization. Gold is generally insignificant; however, some intervals contain structurally hosted silver mineralization. This zone is currently the only area at the MPD project exhibiting a well-developed supergene enrichment zone. The upper ~100 metres are characterized by intense faulting and fracturing, along with widespread copper oxide mineralization, primarily malachite and azurite. Clay alteration, manganese oxides and limonite are common. Copper-oxide mineralization typically occurs as disseminations, fracture-fill, or within hematite-bearing vein stockwork.

The early porphyry phase is weakly veined and displays barren, sericite—gypsum-hematite alteration, with abundant disseminated pyrite. The most common vein type is gypsum. In some areas, remnants of potassic alteration (kspar+biotite+magnetite) and very fine-grained disseminated chalcopyrite are present, along with isolated calcite—chalcopyrite veinlets. These features appear to have locally escaped the sericitic overprint.

The late diorite phase shows intrusive breccia textures and is characterized by quartz+/-molybdenite+/-chalcopyrite veining. This phase hosts copper and molybdenum mineralization. Potassic alteration (K-feldspar and biotite) is closely associated with high grade copper and molybdenum mineralization. The late-stage sericitic alteration, which is commonly destructive to earlier mineral assemblages, is interpreted to be associated with this later intrusive phase.

8 Deposit Types

Porphyry copper deposits are large, low- to moderate metal grade mineral systems that form in association with felsic to intermediate porphyritic intrusions, typically formed in magmatic arc settings above subduction zones (Sillitoe, 2010). The deposits are characterized by extensive hydrothermal alteration zones and associated mineralization. Alteration is zoned, with potassic (K-feldspar ± biotite ± magnetite) commonly associated with the highest copper and gold grades, surrounded by phyllic (quartz-sericite-pyrite), propylitic (chlorite-epidote-carbonate), and occasionally argillic alteration halos within the lithocap (Sillitoe, 2010). Porphyry copper systems represent one of the most significant sources of global copper supply and are important exploration targets due to their size and tonnage.

Based on the composition of the mineralizing intrusions, porphyry deposits can be subdivided into two types: alkaline porphyry deposits and calc-alkaline porphyry deposits. Examples of alkaline porphyry deposits in British Columbia include Copper Mountain, New Afton, and Mount Polley, while examples of calc-alkaline porphyry deposits include Highland Valley, Gibraltar, and Brenda.

The MPD project includes deposits that exhibit both alkaline and calc-alkaline porphyry characteristics. Copper and gold mineralization in mineralized zones that show predominately alkalic porphyry features is linked with multiple pulses of small, compositionally diverse sub-volcanic alkaline intrusions. These zones show limited phyllic and clay alteration, and their alteration footprint tends to be smaller compared to calcalkalic porphyries. Mineralization is primarily hosted in potassic and calc-potassic alteration zones. Sulphide zoning typically progresses outward from bornite-dominant cores to zones with both bornite and chalcopyrite, and then to pyrite—chalcopyrite assemblages. Overall sulphide content, particularly pyrite, is relatively low compared to calc-alkalic porphyries.

Mineralization styles at Gate exhibit characteristics that are related to both alkalic and calc-alkalic systems. Higher grade intervals are dominated by quartz vein stockwork with chalcopyrite and bornite mineralization, however molybdenum is also elevated. Additionally, a well-developed magnetite destructive phyllic overprint, including a pyrite-rich shell, is present. These features are more typical of calc-alkaline type porphyries. Whole rock data also show that the intrusions at Gate have both alkaline and calc-alkaline affinity. Given the two distinct intrusive phases at Gate, perhaps the magmatic-hydrothermal system evolved over time from an alkaline to a more calc-alkaline porphyry system.

9 Exploration

Kodiak conducted exploration programs on the MPD Project between 2019 and 2024. The exploration programs included soil, rock and trench sampling, airborne electromagnetics and magnetics, ground geophysical surveying, trenching and core drilling. On June 18, 2025, Kodiak announced the mobilisation of the 2025 field program that is expected to include 39 diamond and reverse circulation drill holes targeting the West, Adit and South Zones.

9.1 Soil Sampling

Between 2019 and 2024, Kodiak collected 8,525 soil geochemical samples from the MPD Project (Figure 9.1). Grids were designed to confirm historical soil anomalies, follow-up on geophysical anomalies and infill missing geochemical data. Approximately 6,500 soil samples were collected across the original MPD claims and approximately 900 soil samples were collected on the southern Axe claims. Figures 9.2 to 9.7 illustrate copper and gold assay results by Zone.

Sampling grids and each sample site were uploaded to hand-held GPS devices. No cut lines or other grid preparation was required. Samples were spaced at 50 m intervals along lines spaced 50 to 100 m apart. As needed, individual sample sites were moved several metres to obtain suitable soil media for analysis. Samples were collected using a spade. Soil was collected from the top 5 to 15 cm (Upper "B" horizon) of the hole at each site. Approximately 500 grams of material was collected per site and packed into a kraft paper envelope with a sample tag inserted into the bag. Notes on the sample location, soil texture, moisture content and percentage of rock fragments, composition, colour, vegetation type and the depth of the sample were recorded on site.

In July 2019, an eight-day soil geochemical field program was completed on the Project to cover the Man Zone - a copper showing discovered by Newmont Exploration Ltd. in 1979. It is located approximately 1.7 km south of the Gate Zone.

The 2020 soil sampling program included the collection of 328 samples from four grids. The grids were designed to follow-up on anomalous gold results returned from Fairfield Minerals Ltd.'s 1989-1990 soil geochemical program. Of the 328 samples collected in 2020, 104 samples returned anomalous values (>75th percentile) between 26.4 ppm Cu and 141 ppm Cu.

The 2021 soil program collected 1,581 soil samples over a 3.5 x 2.0 km area extending southward covering the Man area and eastward connecting to the historical Dillard soil surveys to infill missing geochemical data and verify historical soil sampling results. Results from the 2021 soil geochemical survey highlighted three new kilometre-scale anomalous copper-gold zones in the Gate, Man and Dillard areas. Of the 1,581 soil samples collecting in 2021, 1,185 returned results between 41.8 ppm Cu (75th percentile) and 1,645 ppm Cu (maximum ppm). Copper values ranging from less than 100 ppm to 1,645 ppm and gold values from below detection to 162 ppb coincide in the north central portion of the soil survey near Gate.

The 2022 soil survey extended coverage southward through the original MPD claim block, expanding on the geochemical work conducted in 2021 and infilling gaps in historical soil surveys. The soil program included the collection of 1,708 soil samples: 1,560 in the northern portion of the Project and 148 at the 1516 Zone in the southern portion of the Project. The majority of samples collected in the northern part of the Project were spread over a 2.9 x 3.0 km grid. Additionally, soil sampling was carried out on the Axe claims, 10 km to the south, to confirm historical copper-gold-molybdenum anomalies in the 1516 target area.

Figure 9.1 2019 - 2024 Soil sampling survey locations

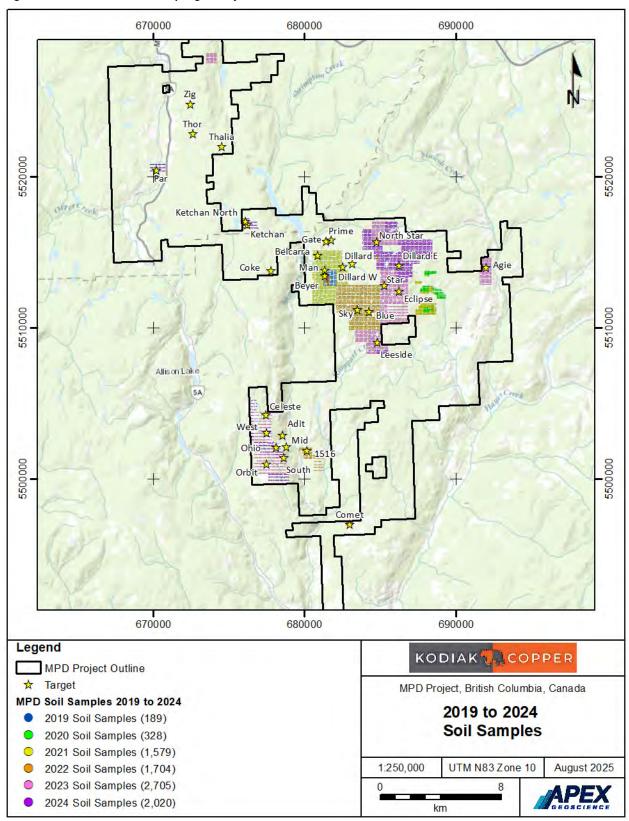


Figure 9.2 2019 - 2024 Soil sampling surveys Cu (ppm) results - MPD Claims

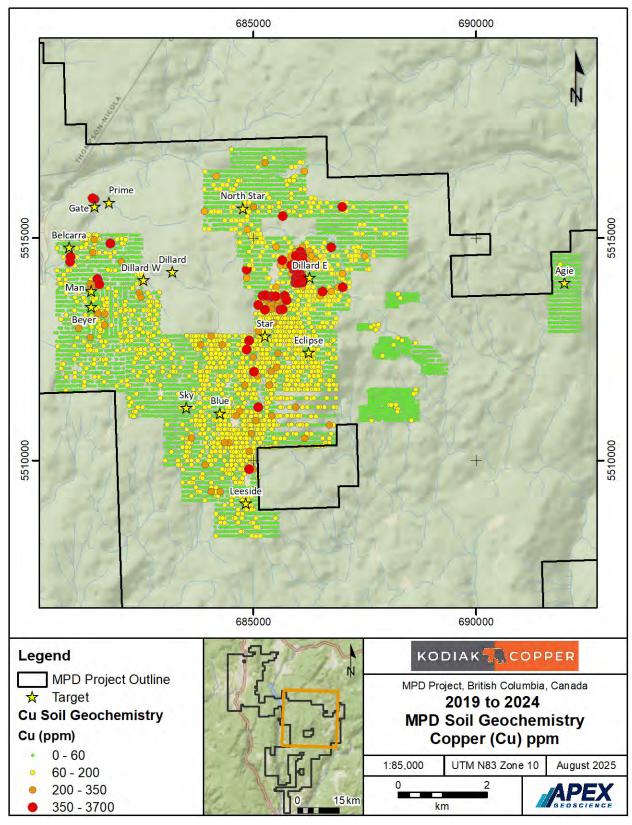


Figure 9.3 2019 - 2024 Soil sampling surveys Au (ppm) results - MPD Claims

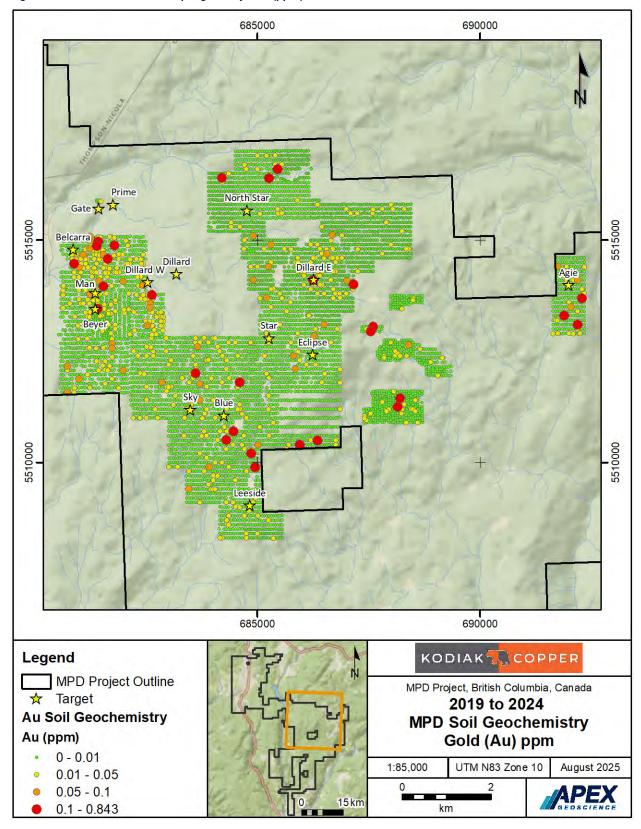


Figure 9.4 2019 - 2024 Soil sampling surveys Cu (ppm) results - Axe Claims

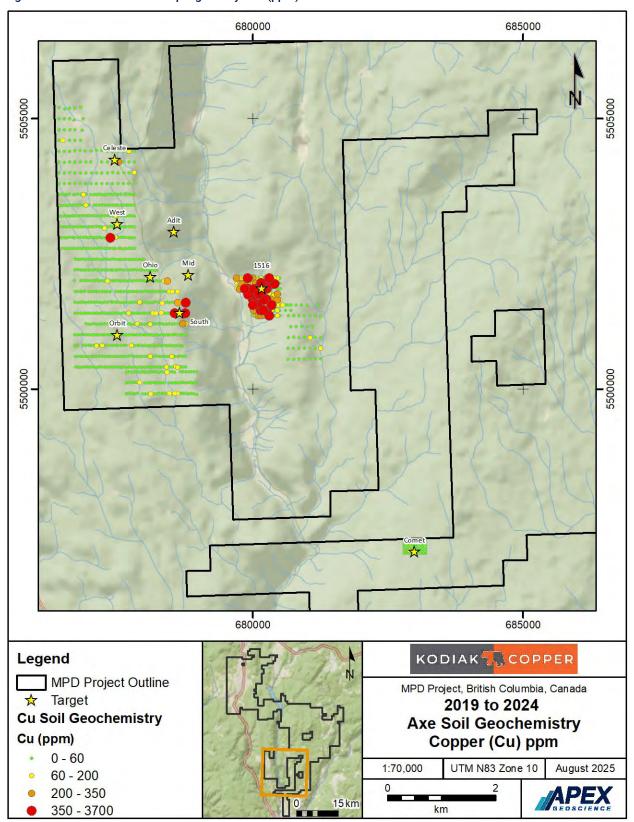


Figure 9.5 2019 - 2024 Soil sampling surveys Au (ppm) results - Axe Claims

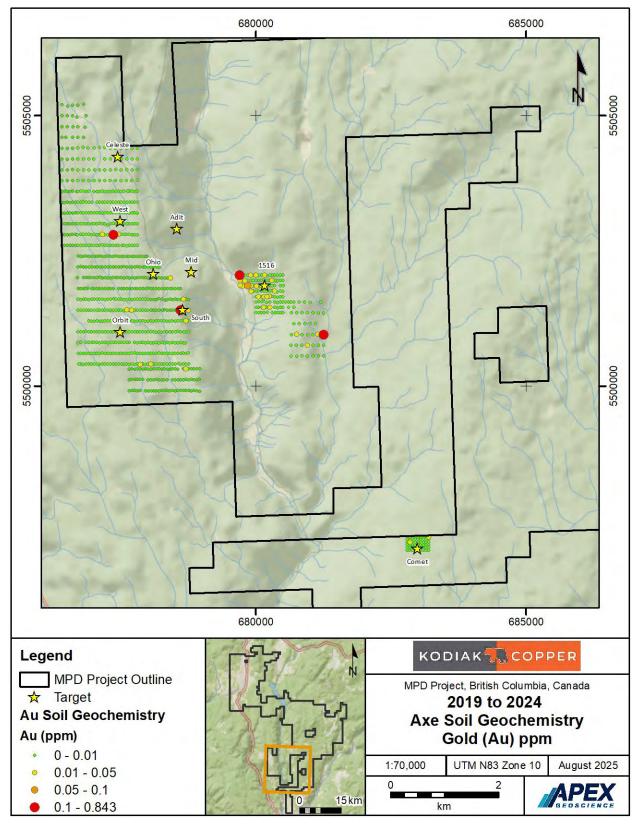


Figure 9.6 2019 - 2024 Soil sampling surveys Cu (ppm) results - Aspen Grove Claims

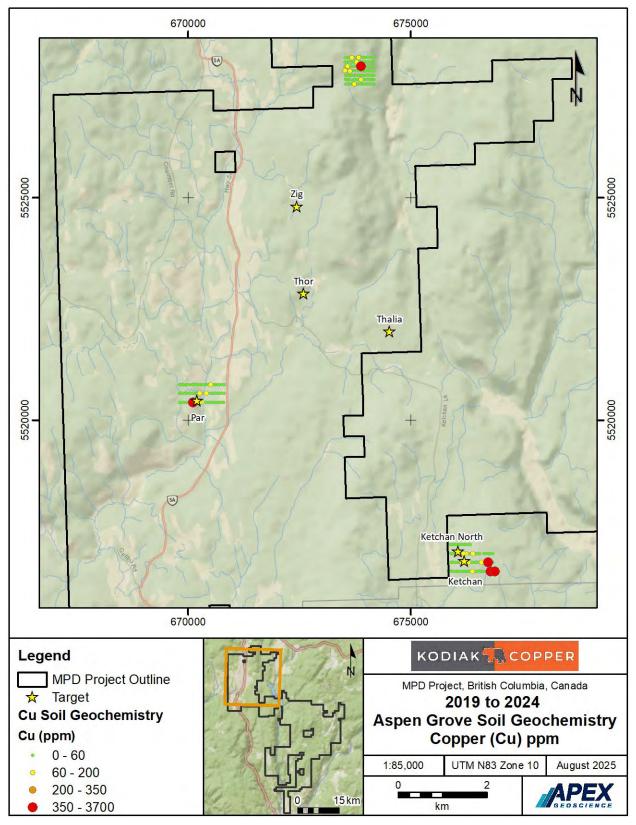
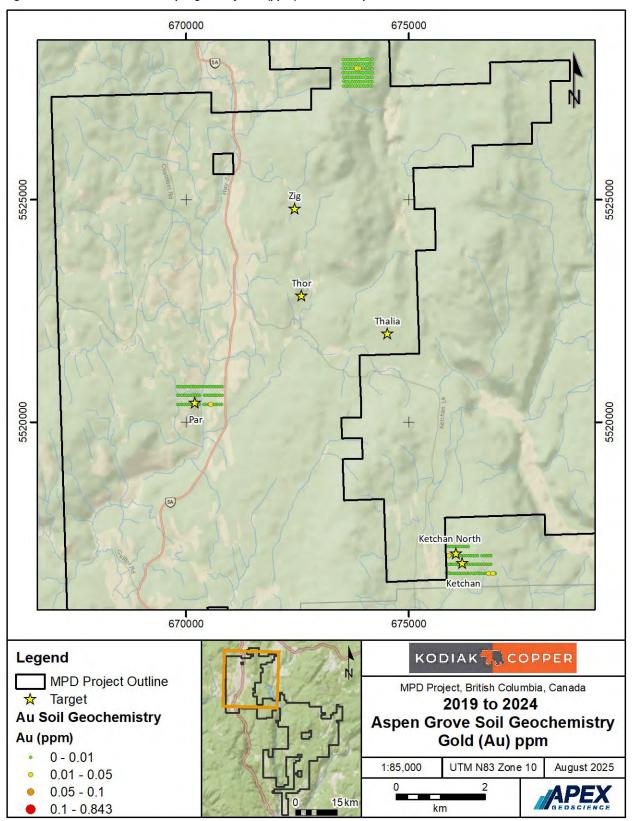



Figure 9.7 2019 - 2024 Soil sampling surveys Au (ppm) results - Aspen Grove Claims

The 2022 soil grid was designed to follow-up on prospecting results from 2021. Results from the 2022 soil geochemical survey helped to define a 3 km north-south oriented copper-gold Sky trend. Of the 1,560 soil samples collected in 2022 on the original MPD claim block, 391 returned anomalous results between 68.3 ppm Cu (75th percentile) and 2,070 ppm Cu (maximum ppm). At the 1516 Target, 37 of 148 samples returned results between 246.8 ppm Cu (75th percentile) and 2030 ppm Cu (maximum ppm). The 2022 soil geochemical results confirmed a copper-gold-molybdenum anomaly in soil at the 1516 target area, situated within a broader 2,200 m by 400 m anomalous zone identified by previous operators.

The 2023 soil geochemical surveying was composed of 2,608 samples collected on seven grids targeting prospective areas across the MPD Project. The majority of samples collected in the northern part of the Project were spread over a 1.9 x 3.6 km grid (the Eclipse grid) extending eastward from the Blue Zone and northward connecting the historical soil surveys. Anomalous (>75th percentile) copper values up to 3,700 ppm and gold values up to 0.500 ppm were returned from the 2023 soil sampling. With grids spread over 20 km of the project area, percentile analysis was tailored to each claim block to account for differences in topography and overburden depth. Anomalous (>75th percentile) copper values up to 3,700 ppm and gold values up to 0.500 ppm were returned from the 2023 soils surveys. Of the 2,112 soil samples collected in 2023 on the original MPD claims, 528 returned anomalous results between 67.25 ppm Cu (75th percentile) and 3,700 ppm Cu (maximum ppm). On the southern half of the project on the Axe claims, 125 of 494 samples returned anomalous results between 33.6 ppm Cu (75th percentile) and 786 ppm Cu (maximum ppm).

The 2024 soil geochemical survey was composed of 2,020 samples collected on eight grids targeting prospective areas across the MPD Project. Of the total, 1,579 samples were collected on the original MPD claims, 305 on the Axe claims and the remaining 136 at various sites on the newly acquired Aspen Grove claims. The largest soil grid in 2024 covered over seven km² at the historical Dillard East target area. Soil results confirmed the historical geochemical results and improved the broad, circular kilometre-scale copperin-soil anomaly at Dillard East which is coincident with 3D-IP chargeability signatures. Anomalous copper values up to 1,500 ppm and gold values up to 0.520 ppm were returned from the 2024 soil sampling. Survey grids covered the Ketchan and Par Zones and totaled 136 samples. The geochemical work confirmed the presence of copper in the areas of interest.

9.2 Rock Sampling

Kodiak carried out several campaigns of rock and trench rock sampling between 2019 and 2024. Kodiak's database includes a total of 657 rock samples with coordinates. Rock samples included grab samples from outcrop, subcrop, float and trenches. A total of 135 samples corresponds to trench samples, including 3 reassays for trench T-22-015. For these samples, assay results for copper range from less than 0.0001% to 3.19 %Cu, and for gold from below detection to 10 g/t. Rock sampling locations with copper and gold results are shown in Figures 9.8 and 9.9, respectively. Trench sampling locations are shown in Figure 9.10.

9.2.1 2019 Rock Sampling

Historical Trench Re-sampling

Kodiak conducted a 15-day rock sampling program which included re-sampling of historical trenches (Table 9-1) and the collection of grab samples.

A total of 173 m in eight trenches was sampled. Chip samples were collected using a rock saw, chisel, and hammer. No mechanical excavation was necessary as the historical trenches were readily accessible. The trenching program investigated historical trenches created by Newmont Exploration of Canada Ltd. (Newmont) at the Man Zone in 1980, as well as sampled historical exposures at Galois Creek (Belcarra),

Figure 9.8 2019 - 2024 Rock sampling results Cu (%)

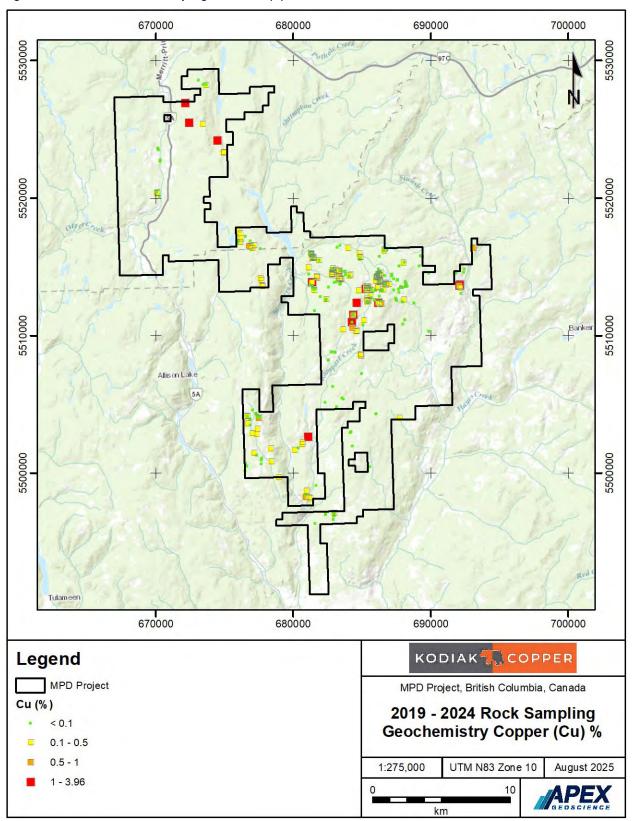


Figure 9.9 2019 - 2024 Rock sampling results Au (ppm)

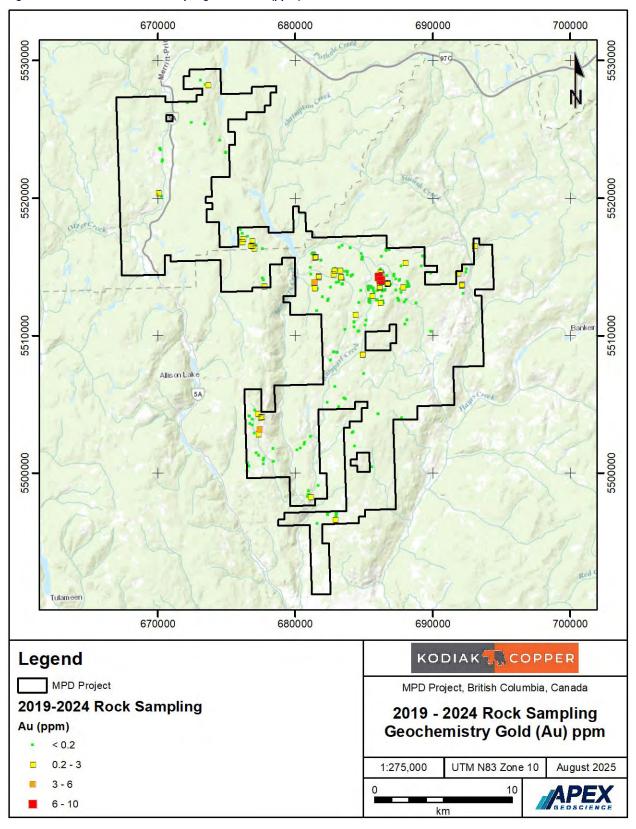
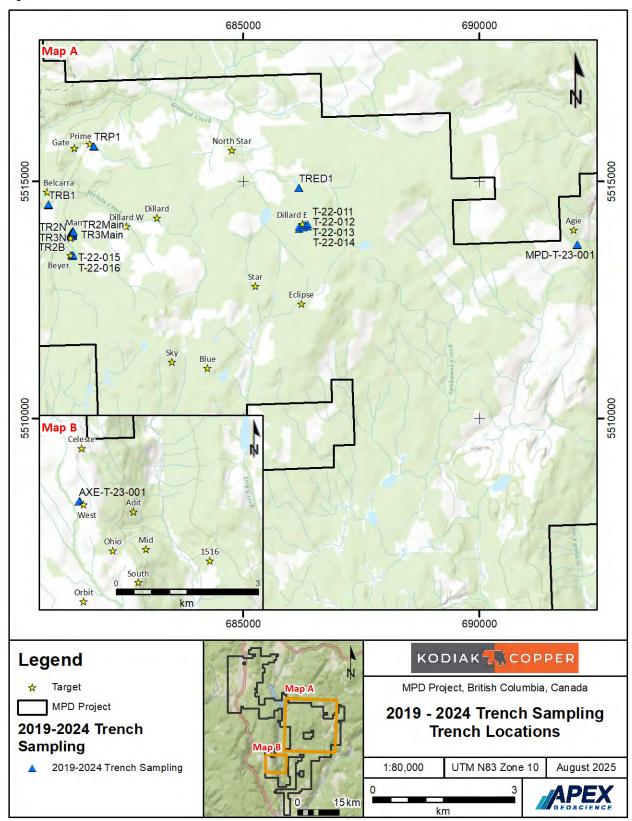



Figure 9.10 2019 - 2024 Trench locations

Prime Zone and Dillard East target. An additional 27 rock grab samples were collected during prospecting on the Project. A total of 140 rock samples (27 grab and 113 trench chip) plus the QAQC samples were sent to ALS in North Vancouver for multi-element geochemical analysis in 2019.

Table 9-1 2019 Historical Trench Re-Sampling

Trench	Easting (Start)	Northing (Start)	Easting (End)	Northing (End)	Length (m)	Showing
TR2Main	681397	5513895	681392	5513848	50.5	Man
TR2B	681400	5513916	681412	5513929	21	Man
TR2N	681394	5513935	681404	5513952	20	Man
TR3Main	681368	5513860	681368	5513838	24	Man
TR3N	681372	5513912	681369	5513903	10	Man
TRB1	683883	5414498	680883	5514519	22.5	Galois Creek
TRP1	681852	5515735	681844	5515743	12.6	Prime
TRED1	686193	5514860	686183	5514858	12.3	Dillard East

Source: APEX (2025)

Historical Newmont trenches 2 and 3 were resampled; however, sampling in 2019 was limited due to an active forest service road that cuts directly through the historical trenches.

Samples from historical trench 2 returned assays of 0.93% Cu, 0.04 g/t Au and 3.33 g/t Ag over 44.5 m and included the highest assay of the program with 3.08% Cu, 0.09 g/t Au and 10.4 g/t Ag. A higher-grade copper zone reported from the original 1980's trench was located directly in the current forest service road. Sampling was conducted along the edge of the road to confirm the historical assay results. Kodiak's resampling returned assays of 1.19% Cu, 0.01 g/t Au and 0.59 g/t Ag over 13 m. Assay highlights are provided in Table 9-2.

Table 9-2 Man Zone Historical Trench 2 - Kodiak Resampling Assay Highlights

Trench	Sample	From (m)	To (m)	Interval	Cu (%)	Au (g/t)	Ag (g/t)
TR2Main	31015	6	8	2	1.22	0.01	<0.5
TR2Main	31016	8	10	2	1.09	0.03	2.3
TR2Main	31020	16	18	2	0.62	0.07	5.8
TR2Main	31021	18	20	2	0.75	0.12	4.7
TR2Main	31022	20	22	2	1.61	0.04	6
TR2Main	31023	22	24	2	3.08	0.09	10.4
TR2Main	31024	24	26	2	2.72	0.06	8.2
TR2Main	31025	26	28	2	2.19	0.07	10.9
TR2Main	31029	34	36	2	0.66	0.01	0.5
TR2Main	31034	44	46	2	1.17	0.01	1.4
TR2Main	31035	46	48	2	1.18	<0.005	1.4
TR2Main	31036	48	50.5	2.5	1.56	0.06	7.4
TR2B	31079	7	8	1	1.68	0.02	1.2
TR2B	31080	8	9	1	2.24	0.02	1
TR2B	31081	9	10	1	2.84	0.01	0.6

Trench	Sample	From (m)	To (m)	Interval	Cu (%)	Au (g/t)	Ag (g/t)
TR2B	31082	10	11	1	1.05	<0.005	<0.5
TR2B	31083	11	12	1	1.07	0.005	0.5
TR2B	31084	12	13	1	1.24	0.03	0.8
TR2B	31085	13	14	1	0.77	0.02	0.6
TR2B	31086	14	15	1	1.29	0.02	0.7
TR2B	31089	17	18	1	0.92	0.01	1
TR2B	31090	18	19	1	1.1	0.01	< 0.5
TR2B	31091	19	20	1	0.69	< 0.005	<0.5

Historical trench 3 was re-sampled and returned 0.61% Cu, 0.14 g/t Au and 1.35 g/t Ag over 22 m and 0.57% Cu, 3.26 g/t Au and 1.80 g/t Ag over 7 m, which included a 1 m segment with 8.01 g/t Au. Assay highlights are presented in Table 9-3.

Table 9-3 Man Zone Historical Trench 3 - Resampling Assay Highlights

Trench	Sample	From (m)	To (m)	Interval	Cu (%)	Au (g/t)	Ag (g/t)
TR3Main	31038	2	4	2	0.96	0.41	1.6
TR3Main	31039	4	6	2	0.64	0.56	2.5
TR3Main	31040	6	8	2	0.84	0.26	1.9
TR3Main	31044	14	16	2	0.92	0.05	1
TR3N	31004	3	4	1	1.74	6.24	5.5
TR3N	31005	4	5	1	1.53	0.60	3.6
TR3N	31006	5	6	1	0.31	8.01	2
TR3N	31007	6	7	1	0.07	1.72	<0.5
TR3N	31008	7	8	1	0.10	2.84	0.9
TR3N	31009	8	9	1	0.15	2.49	0.6

Source: APEX (2025)

The Galois Creek trench returned an assay of 0.59% Cu, 0.144 g/t Au and 0.9 g/t Ag over 1.7 m. The Prime trench did not return any assay values of note.

Grab Sampling

Rock sampling in 2019 focused on investigating historical showings. Of the 29 rock grab samples collected on the Project, six were from the Man Area, nine were collected from the Dillard Area, five were from Dillard East, and nine were collected from the Prime Area.

One rock sample from the Man Area assayed 3.72% Cu, 1.94 g/t Au and 9.7 g/t Ag (sample 31094) and another assayed 2.25% Cu, 0.77 g/t Au and 5.2 g/t Ag (sample 31093). Both samples were collected from highly altered intrusive rocks exposed along a road cut and contained visible malachite and chalcopyrite. Sample 31011 tested a carbonate vein in the Man Zone Historical Trench 3 and returned the highest gold results of the rock sampling program with 2.96 g/t Au, 0.8 g/t Ag and 0.05% Cu.

Six of the nine samples from the Dillard Area returned copper values between 0.20% and 0.80%. The highest assays from the area came from strongly magnetic basaltic boulders with disseminated pyrrhotite and

chalcopyrite; sample 31439 assayed 0.80% Cu, 0.32 g/t Au and 0.9 g/t Ag and sample 31438 assayed 0.76% Cu, 0.24 g/t Au and <0.5 g/t Ag.

The highest silver result of the 2019 rock sample program came from a vuggy quartz-carbonate vein (sample 31420) collected from the Prime Area which assayed 9.4 g/t Ag, 1.03 g/t Au and 0.02% Cu. Other results of note from Prime include 0.49% Cu, 0.26 g/t Au and 2.6 g/t Ag (sample 31419). 2019 rock assay highlights can be seen below in Table 9-4.

Table 9-4 2019 Rock Sample Assay Highlights

Sample	Target Area	Rock Type	Cu (%)	Au (g/t)	Ag (g/t)
31094	Man	Altered Intrusive + Malachite	3.72	1.94	9.7
31093	Man	Altered Intrusive + Malachite	2.25	0.77	5.2
31011	Man	Carbonate Vein	0.05	2.96	0.8
31439	Dillard	Basalt	0.80	0.32	0.9
31438	Dillard	Basalt	0.76	0.24	<0.5
31443	Dillard	Andesite	0.41	0.09	<0.5
31419	Prime	Andesite	0.49	0.26	2.6
31420	Prime	Quartz-Carb Vein	0.02	1.03	9.4

Source: APEX (2025)

9.2.2 2020 Rock Sampling

The 2020 rock sampling program included the collection of 120 grab samples. Sampled target areas included Dillard East as well as Rampart, located approximately 2 km south of Dillard, and Brushcab, located approximately 1.5 km north of Dillard East.

The highest copper assay of the 2020 rock sampling program came from Sample 45575 in the Rampart Area which returned 2.6% Cu, 0.16 g/t Au and 13.1 g/t Ag. Sample 45575 tested a 1 cm wide quartz vein with up to 20% chalcopyrite hosted in epidote altered augite porphyry in outcrop. The 2020 rock sample assay highlights are presented in Table 9-5.

Table 9-5 2020 Rock Sample Assay Highlights

Sample	Target Area	Rock Type	Cu (%)	Au (g/t)	Ag (g/t)
45575	Rampart	Basalt	2.6	0.16	13.1
45473	Dillard East	Diorite	0.77	0.87	11.8
45551	Dillard East	Andesite	0.68	0.25	6.8
45576	Rampart	Basalt	0.64	0.17	1.9
45597	Dillard East	Basalt	0.63	0.47	9.5
45562	Dillard East	Basalt	0.62	0.13	8.7
45462	Dillard East	Quartz Vein	0.54	1.43	6.8
45498	Dillard East	Andesite	0.34	0.55	76.5
45568	Brushcab	Basalt	0.33	0.01	100
45577	Dillard East	Quartz Vein	0.20	0.03	8.9

Sample	Target Area	Rock Type	Cu (%)	Au (g/t)	Ag (g/t)
45457	Dillard East	Quartz Vein	0.13	8.49	9.7

9.2.3 2021 Rock Sampling

As part of the 2021 field program, Kodiak sampled three trenches in the Dillard East area, one trench at the Gate Zone and explored the broader MPD Project. Grab and trench samples were also collected from outcrops and trenches encountered during prospecting-mapping exercises. A total of 190 rock samples was collected through prospecting and trenching, either as grab samples from outcrop, or chip samples in trenches. Samples collected in several areas returned copper mineralization with associated gold and silver.

Trenching

A total of 96.7 m of trenches was sampled and 51 systematic linear-chip samples were collected. Chip samples were collected using a cold chisel and hammer. Three surface trenches were excavated at the Dillard East target, while mechanical excavation was not necessary at the Gate Zone trench. An additional 44 grab samples and localized chip samples were collected from specific veins and when favourable alteration or mineralization was encountered in the trenches.

The Gate Zone trench was a pre-existing road cut that was systematically sampled. Trenching at Gate confirmed copper mineralization at surface. Assays results returned copper between 0.03% and 0.20%.

The three excavated trenches at the Dillard East Zone, except for one interval, which assayed 3.93 g/t Au, did not return any assay results of note.

Rock Sampling

A total of 139 rock samples (95 grab and 44 grabs/chips) was collected while prospecting from Man, Dillard, Dillard East, the Blue target area and Gate. A total of 17 samples followed up on historical copper-in-soil anomalies, geophysical targets and tested favourable lithology encountered along traverses.

Sample 137187 in the Blue area returned 3.19% Cu, 0.21 g/t Au and 40.5 g/t Ag. Sample 137187 corresponds to a 30 cm chip sample in outcrop that tested a zone consisting of enargite-tennantite, pyrite, chalcopyrite matrix microbreccia hosted in strongly calcite-quartz-albite altered diorite feldspar porphyry.

Sample 20189, collected from a quartz-pyrite vein in diorite at the Dillard East Area, assayed 52.0 g/t Au, 0.30 % Cu, and 23.1 g.t Ag. This sample confirmed the high-grade nature of the historical quartz veining in this area.

Sample 137176, from the Dillard Area, corresponded to an altered breccia vein and assayed 178.0 g/t Ag, 0.01 g/t Au and 0.83% Cu. Other results of interest from Dillard include 0.92% Cu, 0.26 g/t Au and 3.1 g/t Ag (sample 137175). 2021 rock sample assay highlights are presented in Table 9-6.

Table 9-6 2021 Rock Assay Highlights

Sample ID	Target Area	Interval (m)	Cu %	Au g/t	Ag g/t	Rock Type
137187	Blue	0.3	3.19	0.21	40.5	Diorite Feldspar Porphyry
137152	Star		1.34	0.01	6.3	Diorite
137175	Dillard		0.92	0.26	3.1	Monzodiorite Porphyry
137190	Blue		0.91	0.02	1.6	Argillite
137176	Dillard		0.83	0.01	178.0	Vein
20189	Dillard East		0.30	52.00	23.1	Diorite
20774	Dillard East		0.08	25.00	11.7	Quartz Vein
20783	Dillard East	0.5	0.45	15.20	13.4	Quartz Vein
137199	Man	2.3	0.03	11.75	42.5	Dacite
137137	Dillard East	0.2	0.39	6.56	1.4	Quartz Vein

9.2.4 2022 Rock Sampling

As part of the 2022 field program, Kodiak staff sampled six trenches and explored the broader MPD Project. Grab and trench samples were also collected from outcrops and trenches encountered during prospecting and mapping exercises. The Company collected 198 rock samples from prospecting and trenching, either as grab samples from outcrop, or chip samples in trenches, including three samples for re-assay from one of the Beyer trenches.

Trenching

Two trenches were located in the Beyer target area, and four trenches were in the Dillard East target area. A total of 261.5 m of trenches was sampled, 131 systematic chip samples were collected, and an additional 3 samples were collected for re-assay at one of the Beyer trenches. Chip samples were collected using a cold chisel and hammer at regular intervals, usually 1 to 2 m in length. Trenching at the Beyer Zone consisted of two crossing perpendicular trenches totalling 32 rock chip samples collected over 64 m. Four parallel trenches, oriented north-south, resulted in the collection of 99 chip samples at the Dillard East Zone.

Beyer Target

Trenching at the Beyer Zone followed up the Kodiak copper-in-soil anomalies, an anomalous 2021 prospecting chip sample and an anomalous 2022 surface sample taken prior to Beyer Zone trenching. Mechanical excavator trenching at the Beyer Zone consisted of two crossing perpendicular trenches. Assay highlights are presented in Table 9-7.

Sampling in north-south oriented trench TR-22-015 expanded the surface gold-silver discovery (sample 137084) to 3.02 g/t gold and 24.18 g/t silver over 12 m, including 5.29 g/t gold and 27.70 g/t silver over 2 m. Sampling in east-west oriented trench TR-22-016 assayed 9.11 g/t gold and 24.00 g/t silver over 2 m, with a parallel zone 8 m to the west assaying 2.60 g/t gold and 10.10 g/t silver over 2 m.

The Beyer Zone is a hydrothermal alteration zone associated with a southerly trending contact or related shearing that separates quartz diorite porphyry on the west side, from a more strongly altered hornblende phyric diorite unit to the east. This intensely altered argillic zone is up to 18 m wide, extending to the north and east end of trenching, and having a narrower high-grade gold-silver silicified zone. The host rock is almost unidentifiable, being altered to limonite-jarosite with patchy zones of fine-grained pyrite arsenopyrite,

sulfosalts, minor barite, and quartz-flooded clay alteration. Analyses of the alteration zone also reveal elevated pathfinder elements such as arsenic, antimony, bismuth, and tellurium.

Table 9-7 2022 Trench Results Highlights

ID	From (m)	To (m)	Interval (m)*	Cu %	Au g/t	Ag g/t	Orientation	Zone
TRENCH- 22-016	18	22	4	N/A	2.47	7.9	W-E	Beyer
includes	18	20	2	N/A	9.11	24	W-E	Beyer
and	8	10	2	N/A	2.6	10.1	W-E	Beyer
TRENCH- 22-015	14	26	12	N/A	3.02	24.18	S-N	Beyer
Includes	20	24	4	N/A	4.7	30.45	S-N	Beyer
Includes	22	24	2	N/A	5.29	27.7	S-N	Beyer
TRENCH- 22-012	6	16	10	0.17	1.30	1.53	S-N	Dillard East
includes	12	14	2	0.78	3.22	4.83	S-N	Dillard East

^{*}Sample intervals are 1 to 2 metre trench chip samples. Trench data to date is insufficient to determine true width or orientation of mineralisation.

Source: APEX (2025)

Dillard East Zone

Four north-south trending trenches totalling 197 m were excavated in the Dillard East showing area across the projected strike of gold-bearing veins sampled during the previous season.

The three western trenches all cut a 085-degree trending mineralized structure in hornblende diorite. The structure is observed over a strike length of 135 m and is intensely altered to clay and sericite. The far eastern trench encountered deep weathering and strong clay alteration on strike with the trend projected from the other trenches, but the bedrock surface was too deep to safely excavate the southern portion of the trench. The best sample at the Dillard East trenches assayed 0.17% Cu, 1.30 g/t Au, and 1.53 g/t Ag over 10 m including 0.78% Cu, 3.22 g/t Au, and 4.83 g/t Ag over 2 m in TR-22-012 (Table 9-7).

Rock Sampling

In addition to the trench sampling, 64 rock samples were collected during property-wide reconnaissance prospecting during the 2022 program. Of the 60 rock grab samples collected, 47 were from the original MPD claim block and 17 were collected from the Axe claim block. On the original MPD claim block, 6 tested the Blue target area, 10 were from Dillard East, 2 were collected from the Dillard Zone, 4 were from the Beyer target area, and 1 was from the Man Zone. The remaining 20 samples followed up historical copper-in-soil anomalies, geophysical targets and tested favourable lithology encountered along traverses. On the Axe claims, 7 rock samples were collected from the South and Southwest Zones, 4 from the 1516 target area, 1 from the West Zone, and the remaining 5 samples investigated historical showings.

The highest copper and silver assay from the 2022 prospecting program assayed 3.96 % Cu, 0.61 g/t Au, and 64.4 g/t Ag from rock sample 222202 (Table 9-8). This new showing is called the Eclipse target area. Eclipse is a magnetite-biotite-actinolite-rich altered volcano-sedimentary outcrop (possible hornfels) with significant chalcopyrite and fine-grained magnetite veins. The showing is located in a relatively underexplored part of the Property six km southeast of the Gate Zone. Three samples were collected in this new area to

characterize mineralization. Sample 222206 consisted of fine, dusty chalcopyrite in strongly (altered?) magnetite-biotite hornfels Nicola sediments. Sample 137065, collected 200 m east of samples 222202 and 222206, consists of veined magnetite-altered Nicola volcanic rock with chalcopyrite and assayed 0.68 % Cu, 0.117 ppm Au, and 10.4 ppm Ag.

The highest gold assay of the 2022 program came from sample 137084 taken at the Beyer Zone which assayed 14.15 g/t Au and 9.40 g/t Ag. This sample was further investigated with trenching later in the exploration season.

At Dillard East, sample 137092, a rock grab sample of a 45-cm wide vein, is the most mineralized sample collected from the 2022 Dillard East trenches. It contains the highest gold value at 4.62 ppm, 0.55 % Cu, and 14.65 ppm Ag, and is anomalous in arsenic, bismuth, cobalt, and tellurium. The As-Bi-Te enrichment is similar to the Beyer Zones polymetallic enrichment around the gold bearing area. The alteration is deemed to be advanced argillic in nature.

Table 9-8 2022 Rock Assay Highlights

Sample ID	Target	Copper (Cu) %	Gold (Au) g/t	Silver (Ag) g/t	Rock Type
		MPD Cla	im Block		
137075	Star	0.38	0.68	1.8	Diorite
222202	Eclipse	3.96	0.61	64.2	Hornfels w/ Magnetite
137065	Eclipse	0.68	0.12	10.4	Andesite
222206	Eclipse	0.46	0.08	7.4	Hornfels w/ Magnetite
137092	Dillard East	0.55	4.62	14.7	Vein
137093	Dillard East	0.29	1.43	1.8	Vein
137083	Beyer	0.02	2.83	27.1	Vein
137084	Beyer	0.01	14.15	9.4	Lag Deposit
		Axe Clai	m Block		
137099	Axe West	0.1	3.75	1.7	Diorite
137067	1516	0.16	0.06	24.9	Diorite
222210	1516	0.44	0.09	3.7	Diorite

Source: APEX (2025)

9.2.5 2023 Rock Sampling

The 2023 rock sampling program included the collection of 57 grab samples. The rock sampling program was conducted by one Kodiak prospector working out of Merritt, B. C. who accessed the Project daily via existing logging roads. The prospector sampled for 58 days between April 21 and November 10, 2023.

Of the 57 rock grab samples collected, 20 were from the original MPD claim block and 37 were collected from the Axe claim block. Samples collected in both the MPD claims and Axe claims continue to return copper porphyry mineralization (with associated gold and silver) and have identified several polymetallic showings. The 11 prospecting samples with the highest copper and gold assays, with rock type descriptions, are included as Table 9-9. Select prospecting results are discussed below.

The highest copper and silver prospecting results in 2023 assayed 1.66 % Cu, 0.28 g/t Au and 699 g/t Ag from the Agie Target area (sample 222230). Samples in the historical Agie Pit and Siwash Creek areas highlight the potential for polymetallic occurrences in the northeast corner of Property.

Similarly, prospecting in 2023 discovered the new Comet polymetallic showing on the Axe claim block acquired in 2023. The best sample assayed 2.87% Zn, 13.9 g/t Ag and 0.08% Cu (sample 222159) from skarnaltered host rock.

The highest gold value was returned from follow-up sampling in the Beyer target area and assayed 0.20 % Cu, 2.39 g/t Au and 25.5 g/t Ag (sample 222163). No significant gold assays were reported in the 2023 drill holes that were drilled to test the Beyer target area. The mineralized zone at Beyer is interpreted to be a narrow lens that does not continue to depth or a structural zone related to the Man Zone located 375 metres to the northwest. No further work is proposed at this area.

Table 9-9 2023 Rock Sample Assay Highlights

Sample ID	Easting (UTM Z10)	Northing (UTM Z10)	Target	Cu %	Au g/t	Ag g/t	Pb %	Zn %	Host Rock Type
222230	692094	5513670	Agie	1.66	0.28	699.0	3.69	0.59	Vein
222232	693075	5516403	Agie- Siwash	0.98	0.18	272.0	1.08	0.86	Vein
222237	691850	5514543	Agie- Siwash	0.03	0.49	21.2	0.50	0.54	Vein
222224	682801	5514412	Dillard	0.46	0.18	0.6	0.00	0.00	Diorite
222163	681387	5513434	Beyer	0.20	2.39	25.5	0.00	0.00	Vein
222159	682990	5497099	Comet	0.08	0.07	13.9	0.00	2.87	Rhyolite Skarn
222239	677476	5504041	Celeste	0.69	0.68	4.5	0.00	0.00	Vein
222154	677584	5504080	Celeste	0.02	0.78	11.4	0.68	1.50	Limestone
222145	677394	5503121	West	0.42	0.08	2.0	0.00	0.01	Diorite (0.7m chip)
222147	677388	5503116	West	0.54	0.17	1.7	0.00	0.00	Diorite (1.5m chip)
222158	681089	5502659	1516	1.01	0.06	9.0	0.00	0.01	Diorite

Source: APEX (2025)

9.2.6 2024 Rock Sampling

The Company collected a total of 65 rock samples from prospecting traverses in 2024. Twenty-nine of these were from the original MPD and Axe claim blocks, and the remainder were collected on the Aspen Grove claims. Samples yielded copper assays from less than 0.001% to 3.39% and for gold, from below detection to 0.784 g/t.

Sample 222175 yielded assays of 1.07 % Cu, 0.05 g/t Au and 7.0 g/t Ag from veins in monzonite host rock, near the centre of the Property midway between the Blue and Star targets. Sample 222174, from breccia near the Northstar target assayed 0.45% Cu, 0.01 g/t Au and 3.5 g/t Ag (Table 9-10).

A series of samples was collected on the Axe claims within the Dry Creek target, at the south end of the Axe claim block in a prospective area identified by Cominco in the 1980's. Samples included sample 222198 which yielded 0.62% Cu, 0.11 g/t Au and 1.9 g/t Ag related to felsic rocks in an area of quartz monzonite intrusions.

The Aspen Grove claims host 18 known mineral occurrences, including six with significant porphyry-related copper-gold (+/- silver, molybdenum): Ketchan, Par, Zig, Thalia, Thor and Coke. Kodiak collected a total of 38 rock samples from prospecting on the Aspen Grove claims in 2024. The focus was to obtain representative samples from most mineralized targets to confirm grades and understand geology.

The highest copper and silver prospecting results in 2024 from Aspen Grove assayed 3.39 % Cu and 16.9 g/t Ag from the Thalia Target area in the northwestern portion of the project (sample 222339). The sample was taken from chalcocite veins hosted in porphyry tuff and sandstone.

The highest grading gold-rich copper mineralization was returned from sampling in the Ketchan Zone area and assayed 0.55 % Cu, 0.32 g/t Au and 0.5 g/t Ag (sample 222321) and 0.38 % Cu, 0.78 g/t Au and 1.7 g/t Ag (sample 222343).

Table 9-10 2024 Prospecting Result Highlights

Sample ID	Easting (UTM Z10)	Northing (UTM Z10)	Target	Cu %	Au g/t	Ag g/t	Pb %	Zn %	Host Rock Type
222174	684867	5515723	Northstar	0.447	0.011	3.51	0.0081	109	Monzonite
222175	684628	5512396	NEW-1	1.07	0.049	7.04	0.0088	88	Vein
222196	681229	5498143	Dry Creek	0.393	0.104	12.4	0.0257	123	Granite
222198	680902	5498272	Dry Creek	0.618	0.07	4.1	0.0066	63	Rhyolite
222303	670081	5520400	Par	0.413	0.146	1.57	0.0014	205	Volcanic
222305	677765	5513600	Coke	0.371	0.248	4.13	0.367	693	Breccia
222311	676220	5517030	Ketchan	0.435	0.424	2.13	0.0055	197	Monzonite
222315	676097	5516785	Ketchan	0.308	0.097	0.93	0.0019	63	Monzonite
222318	672144	5526920	Nor	1.195	0.009	2.75	0.0086	86	Volcanic
222319	672448	5525510	Zig	1.335	0.005	3.92	0.0069	84	Monzonite
222321	676758	5516509	Ketchan	0.554	0.323	0.52	0.0093	103	Monzonite
222333	677151	5516551	Ketchan	0.323	0.103	4.59	0.171	904	Monzonite
222335	676884	5516556	Ketchan	0.53	0.226	2.6	0.009	120	Monzonite
222339	674496	5524190	Thalia	3.39	0.004	16.9	0.0448	76	Tuff
222342	674947	5523320	Thalia	0.399	0.003	2.94	0.0416	109	Tuff
222343	676147	5516799	Ketchan	0.378	0.784	1.69	0.0031	56	Monzogabbro

Source: APEX (2025)

9.3 Induced Polarization and Magnetotelluric Survey

Kodiak contracted SJ Geophysics Ltd. of Delta, BC to conduct 3D Induced Polarization (3DIP) and magnetotelluric (MT) surveying on the MPD Project. Annual surveys were conducted between 2021 and 2024 (Figures 9.11 and 9.12). Lines were spaced 100 m or 200 m apart. No line preparation was completed in advance of the geophysical survey. Line cutting was not needed. All survey stations were located in the field in real-time using hand-held GPS units. Stations were not flagged or marked. The IP survey lines had a bearing of N090°E.

Under the supervision of Syd Visser, the Volterra Distributed Acquisition System was utilized to acquire the geophysical data using an Instrumentation G.D.D TxII 3600 kW transmitter and two 4-channel receivers. The Volterra-3DIP survey was acquired using 5-line acquisition sets consisting of three current and two receiver lines in an alternating pattern. The two receiver lines were spaced 200 m apart, measured from the centre of the line, and shared one common electrode. The outside two current lines were spaced 300 m from the centre of each receiver line, increasing the amount of 3D data acquired and improving the depth of investigation. Upon completion of each acquisition set, the five lines were shifted over 400 m to the next acquisition set, repeating one current line. For each current injection, all receiver dipoles for the acquisition set were active. Current injections occurred every 100 m along each current line. The Transmitter cycle was 2 seconds on / 2 seconds off, using a reading length of 120 seconds with Chargeability measured in millivolts/volt and Resistivity in ohms/metre. Volterra-MT data was acquired in conjunction with the 3DIP data to provide additional information on deep resistivity features within the survey grid.

The BC TRIM 20k DEM, with a resolution of 10 m, was utilized in place of the hand-held GPS elevations for data QC and 3D inversion modeling. Geophysical inversions are commonly performed for every survey carried out by SJ Geophysics. Several inversion programs are available, but SJ Geophysics primarily uses the UBC-GIF algorithms (e.g. DCIP2D, DCIP3D, MAG3D, GRAV3D) which were developed by a consortium of major mining companies under the auspices of the University of British Columbia's Geophysical Inversion Facility. In general, multiple inversions are carried out for each dataset and the resultant inversion models are compared with known information to evaluate the model. The most geologically reasonable model that fits the data is then chosen as the best model.

Once the final inversion model is selected, the model is gridded and mapped for interpretation. Typically, cross-sections and plan maps are created then sliced at different depths beneath the surface. The inversion results can be visualized in 3D using open source software packages in both 2D and 3D views. The data was collected using the NAD83 UTM Zone 10N coordinate system.

9.3.1 2021 IP Survey

The 2021 survey consisted of 19.7 grid line km (26.9 surveyed line km) covering a 1.6×2.0 kilometre area centered on the Gate copper-gold porphyry zone and historical Prime target. The grid consisted of 11 survey lines, each 1,800 m in length.

Analysis of historical shallow IP suggested a correlation of higher-grade copper-gold mineralization at Gate with northeasterly trending structures or zones defined by conductivity (low resistivity) and chargeability anomalies. The purpose of the new 3D IP survey was to characterise the geophysical response of drilled copper-gold mineralization at Gate below historical IP data (~200 m depth) and to identify new targets associated with the high-grade mineralized copper-gold system at the Gate Zone which may be more fully preserved at depth.

Figure 9.11 Combined IP Surveys 2021, 2022, 2023 and 2024. Chargeability at 200 m Depth

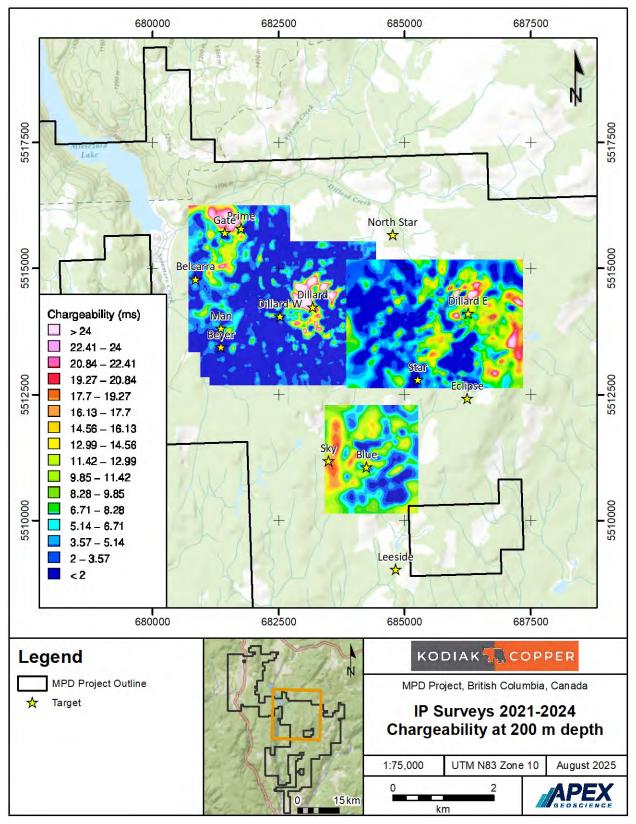
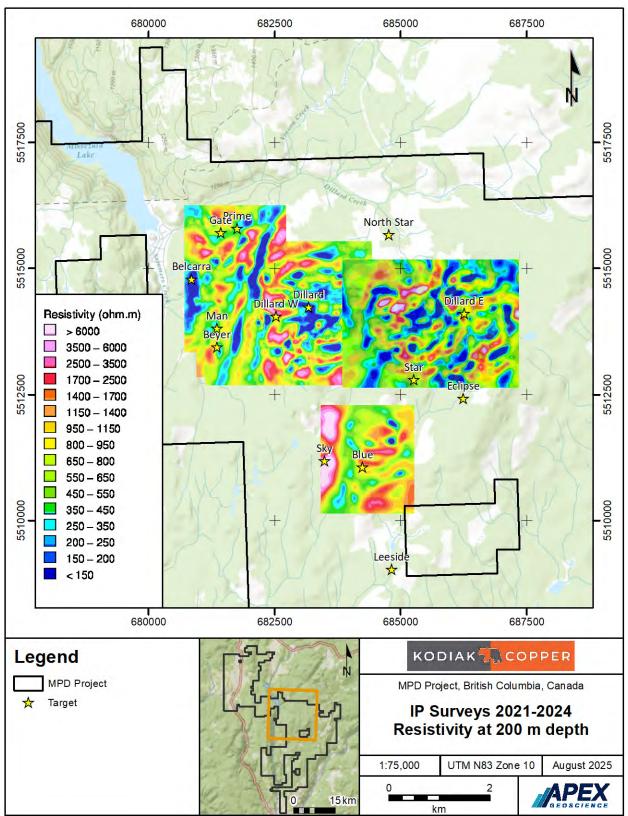



Figure 9.12 Combined IP Surveys 2021, 2022, 2023 and 2024. Resistivity at 200 m Depth

The 2021 3D IP survey results correlate well with mineralization at Gate, particularly higher-grade zones which correspond to conductive responses on the flanks of resistive highs and chargeability trends at depth. Some of the responses were seen to extend beyond the copper grades noted in drilling, thereby highlighting the potential to expand Gate Zone mineralization along strike and down plunge to the south and east.

9.3.2 2022 IP Survey

The 2022 geophysical survey was completed over two periods in the spring and fall. The 2022 surveys tie onto a grid completed in 2021 (Phase 1), extending the IP coverage over areas of interest and providing improved resolution. The 2022 spring survey (Phase 2) was completed between May 11 and June 17 and consisted of 40.9 grid line km (62.3 surveyed line km). The fall survey (Phase 3) was completed between September 14 and October 7 and consisted of 26.8 grid line km (40.1 surveyed line km). The survey total for 2022 was 67.7 grid line km (102.4 surveyed line km), covering an area from the Gate Zone to the Beyer area in the south, and extending eastward past Dillard.

The 2022 IP Surveys showed that the mineralization envelope at the historical Dillard occurrence is associated with chargeability high responses; however, the signature is not simple. The chargeability anomaly can be seen to extend to depths of >600m, varying in shape from a relatively coherent anomaly at surface to an S shaped feature at depths of between 200 to 500 m. The S-shaped signature suggests folding may be present, however additional drilling is required to confirm this observation. As with the Gate zone, mineralization was also associated with the envelopes around the edges of some of chargeability high features.

At the Man zone, well-defined coincident resistivity/chargeability anomalies were identified beneath historical showings and trenches in the area. The anomalies are "chimney like" and can be seen at depths >600 m from surface, suggesting that the Man occurrence extends well below the historical drilling. The features widen at depth but are limited in extent to the north and south.

Structural features were defined by the IP data in both the resistivity and conductivity datasets. To the east of Man, the resistivity/conductivity data highlights a large, well defined NNE trending structure. The fault can be seen to extend in the north from the Prime zone to beyond the survey area in the south. An ENE trending fault located south of the Dillard was also observed in the conductivity data.

9.3.3 2023 IP Survey

The 2023 3D-IP survey expanded upon survey areas completed in prior years and consisted of 51 grid line km, oriented east-west and covering 2.6 square km, completed by SJ Geophysics Ltd. The survey focused on assessing kilometre-scale geochemical trends and corroborating prospecting results found in the Blue and Sky target areas.

The 2023 3D-IP data generated a new drill target at Blue, characterised by a broad chargeability anomaly from surface to 700 m depth. The anomaly is associated with a kilometre-scale copper-in soil anomaly identified in 2021 and prospecting samples with significant copper-gold-silver, including a 2021 sample with 3.19% Cu, 0.21 g/t Au and 41 g/t Ag (sample 137187). Corroborating results from soils, rock and geophysics at the Blue Target warrant drilling to further investigate.

9.3.4 2024 IP Survey

The 2024 3D-IP survey expanded upon survey areas completed in prior years and consisted of 108 grid line km, oriented east-west and covering over seven square km. The survey focused on assessing VRIFY AI Areas of Interest and corroborating prospecting results found in the Dillard East and Star target areas.

The 2024 3D-IP data identified several large chargeability highs at both the Dillard East and Star target areas. A two-kilometre-long northeast trending chargeability high transects a circular copper-in soil signature that characterizes the Dillard East and Star targets. A second one-km-long 3D-IP response in the southeast corner of the survey similarly flanks the large circular copper geochemical signature at Dillard East.

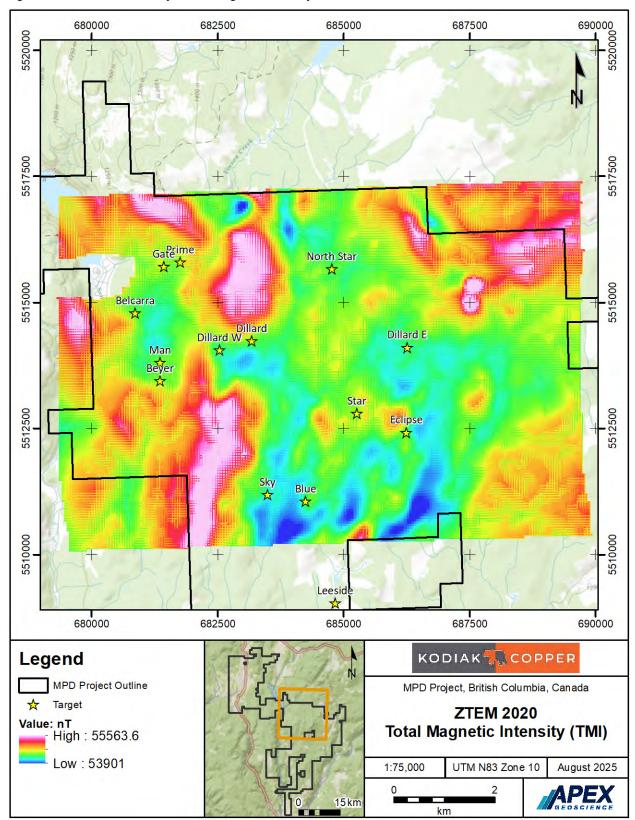
9.4 Airborne Electromagnetic and Aeromagnetic Survey

Information included in this section is extracted from the 'Report on a Helicopter-Borne Z-Axis Tipper Electromagnetic (ZTEM™) and Aeromagnetic Geophysical Survey' by Geotech Ltd'.

During the month of May 2020, Geotech Ltd. carried out a helicopter borne ZTEM (Z-Axis Tipper Electromagnetic) and Aeromagnetic geophysical survey over the original MPD claim block. A total of 440 line-km of geophysical data was acquired between May 1 and May 19, 2020, using an A-Star 350B3 helicopter. Operations were based out of Princeton, BC.

In a ZTEM survey, a single vertical-dipole air-core receiver coil is flown over the survey area in a grid pattern, similar to regional airborne EM surveys. Two orthogonal, ferrite-core horizontal sensors are placed close to the survey site to measure the horizontal EM reference fields. Data from the three sensors are used to obtain the Tzx and Tzy Tipper (Vozoff, 1972) components at six frequencies in the 30 to 720 Hz band. The ZTEM is useful in mapping geology using resistivity contrasts. Magnetometer data provides additional information on geology using magnetic susceptibility contrasts.

The survey area was flown in a west to east (N 90° E azimuth) direction with traverse line spacings of 200 m and tie lines were flown in a south to north direction (N 0° E azimuth) at various line spacings. The survey covered an area of 74 square km on the north end of the Property. Principal geophysical sensors included a Z-Axis Tipper electromagnetic (ZTEM) system and a cesium magnetometer. Ancillary equipment included a GPS navigation system and a radar altimeter. A combined magnetometer/GPS base station was established at a secured location away from the electric transmission lines and moving ferrous objects such as motor vehicles. Quality assurance and preliminary processing was conducted daily during the survey. Final data processing was undertaken at the Geotech Ltd. office in Aurora, Ontario.


During the survey, the helicopter was maintained at a mean altitude of 172 m above the ground with an average survey speed of 106km/hour. This allowed for an average receiver loop terrain clearance of 101 m and a magnetic sensor clearance of 116 m.

The 2020 ZTEMTM airborne data has confirmed the high-priority porphyry targets at Gate and Dillard by highlighting large magnetic and resistive features that extend to depth, which are also coincident with significant mineralization in Kodiak's 2019 and 2020 drill holes. In addition to porphyry copper-gold targets, the ZTEMTM survey provided Kodiak with deep resistivity and magnetic data over historical gold geochemical trends in the Dillard East area. These eastern claims were previously explored by Placer Dome Inc. in the early 1990's and Fjordland Exploration Inc between 2011 and 2015. Several years of work confirmed a similar geological setting to the adjacent historic Elk Gold Mine (late intrusions and quartz vein hosted gold) and Dillard East has comparable potential. A map of the original MPD claim block showing the Total Magnetic Intensity is presented in Figure 9.13.

Figure 9.13 2020 ZTEM Survey - Total Magnetic Intensity

9.5 VRIFY Artificial Intelligence Prospectivity Review

Kodiak engaged VRIFY to undertake a prospectivity review of the Project using their Artificial Intelligence platform ("AI"). The VRIFY AI utilizes advanced algorithms to identify complex correlations across multiple datasets to highlight areas of interest. Regional and project scale datasets were imported into the AI application. Datasets that were used included all available Kodiak and historical Project digital data as well as regional public datasets. The AI algorithm compares learning points to an extensive database of deposits that have similar characteristics. The results are presented as a VRIFY Prospectivity Score ("VPS") in either 2D or 3D depending upon the datasets included in the modelling. A higher VPS indicates areas of higher prospectivity. As more data becomes available, the AI is re-run to improve the results. In 2025, Kodiak continued working with VRIFY geologists to further assess the results and incorporate them into the Project exploration strategy.

10 Drilling

10.1 Historical Drilling Summary

Historical drilling on the Project has been conducted by several companies from 1962 to 2018. The current MPD Project database includes 495 historical drill holes, totaling 70,264 metres within the Project boundaries (Table 10-1). The majority of the information presented in Section 10.1 was obtained from various publicly available reports in the ARIS database. The historical exploration programs are discussed in detail in Section 6 and drilling is summarized below in Section 10.1. Historical drill hole locations are presented in Figures 10.1 to 10.3.

Table 10-1 Historical Drilling Summary

Year	Operator	Number of holes	Metreage (metre)	Prospect
1962-1965	Tormont Mines Ltd.	18	2759	Par
1962-1966	Adera Mining Limited and Plateau Metals Ltd.	10	657	Ketchan
1965-1969	Primer Group and Pageant Mines Ltd.	33	3744	Prime and Dillard
1967	Meridian Syndicate	7	653	South
1968	Quintana Minerals	4	1009	South and Adit
1969-1973	Adonis Mines and AMAX	165	12335	South, West and Adit
1974-1980	Bethlehem Copper Corporation	16	1661	Ketchan and Ketchan West
1980-1981	Newmont Exploration of Canada Limited	8	1509	MAN
1982	Cominco	6	766	South and Adit
1991	Fairfield Minerals & Placer Dome Inc	11	2031	Dillard
1991	Cominco Ltd.	11	375	West of 1516
1991-1992	Cominco Ltd.	23	1707	Ketchan
1991	Rayrock Yellowknife Resources Inc.	9	651	Zig
2004-2009	Bearclaw Capital Corp and Weststar Resourced Ltd	25	4494.7	South, West and Adit
2005-2007	Copper Belt Resources and Midland Resources	17	2626	Ketchan
2007-2010	Candorado Operating Company Ltd and GWR Resources Inc.	35	6879	MAN and Prime
2013	Sunrise Resources Ltd	2	1289.9	Prime
2013-2014	Fjordland Exploration Inc.	21	8210.2	Dillard
2014	Copper Mountain Mining Corp.	4	1595	West and South
2014-2016	Kaizen Discovery Inc.	27	12504	Ketchan and Par
2018	Evrim Resources Corporation	43	2808.9	West, South, Adit

Source: APEX (2025)

Figure 10.1 Historical Drill Hole Locations - MPD Claims

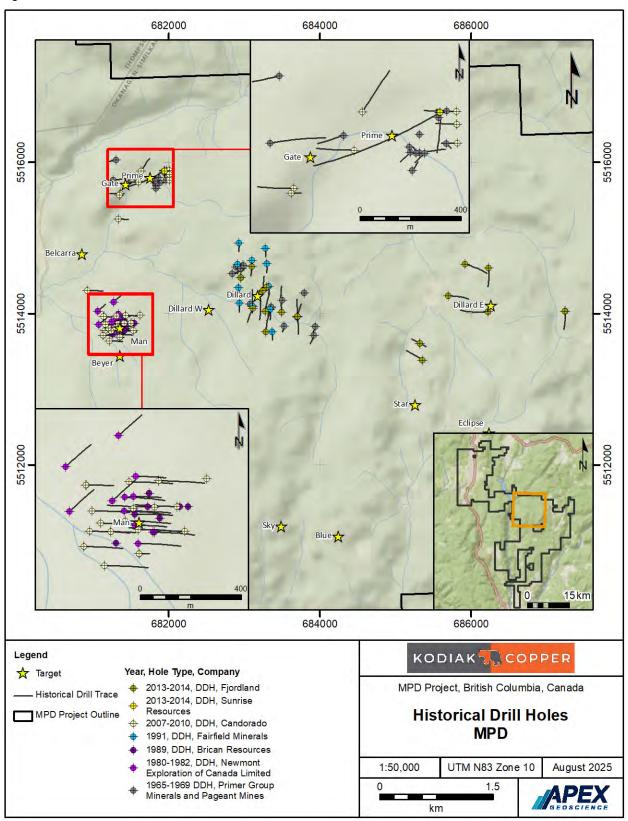


Figure 10.2 Historical Drill Hole Locations - Axe Claims

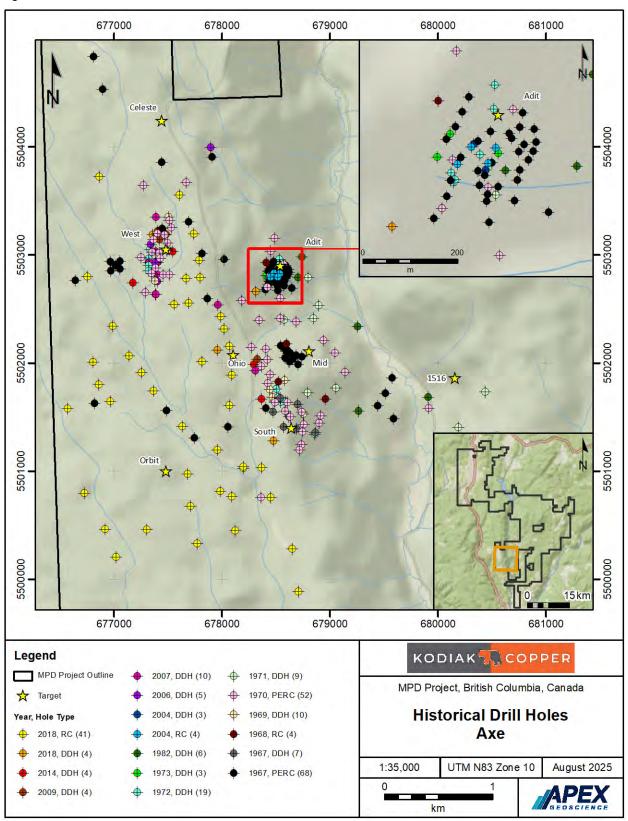
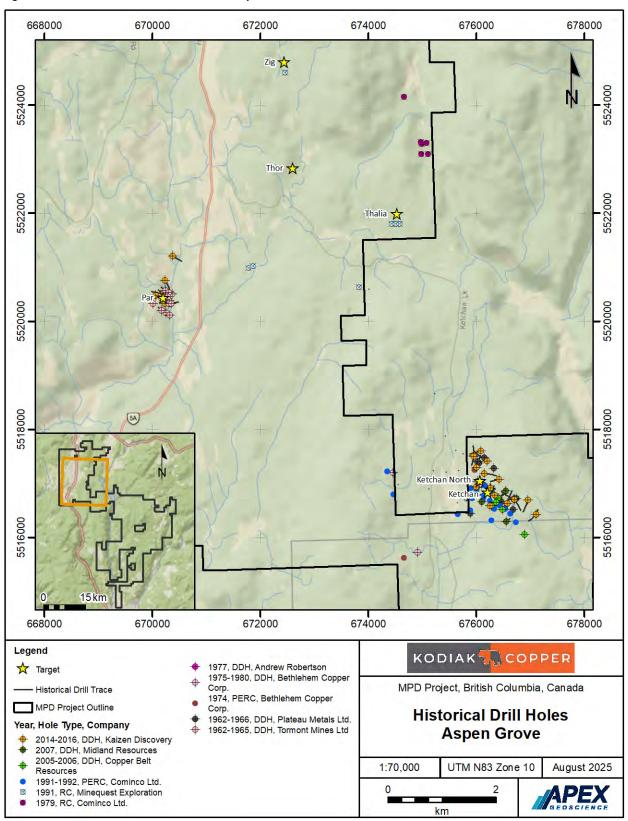



Figure 10.3 Historical Drill Hole Locations -Aspen Grove Claims

As expected, there is limited information on the drilling contractors, drill types and sampling methods used in the historical drill programs conducted prior to the implementation of NI 43-101 standards. Collar and end of hole survey data are available for the Copper Belt and Candorado drilling programs. Downhole survey data are available for most of the drill programs conducted at the Property post-2013. Sunrise recorded downhole survey dip data every \sim 90 m. Fjordland recorded downhole survey data at various intervals from 50 to 250 m using a Reflex survey tool. Kaizen recorded downhole surveys every \sim 50 m.

For drilling conducted from 2005 to 2016, drill samples were sent to reputable laboratories, including Eco-Tech Laboratories, ALS Geochemistry, Acme Analytical Laboratories, International Plasma Laboratories, and Activation Laboratories. Quality control standard, blank, and duplicate samples were inserted into the sample sequence at various rates by Copper Belt Resources (2006-2007), Candorado (2007-2010), Sunrise (2013), Fjordland (2013-2014), and KZD (2015-2016).

Additional information on sampling preparation, analyses, and security used in historical drilling programs is summarized in Section 11.1.

10.1.1 Man, Prime and Dillard Historical Drilling

A total of 122 diamond drill holes, totalling 26,345 m were completed on the original MPD claims by previous operators from 1965 to 2014 (Table 10-2). A total of 33 holes (DDH) were drilled between 1965 and 1969, with 12 DDH between 1979 and 1981, 8 DDH in 1988, 11 DDH from 1989 to 1991, 35 holes between 2007 and 2010, 2 DDH in 2013 and another 21 DDH from 2013 to 2014. Another 2 DDH drilled in 1987 and 2 DDH in 1999 are excluded from the total, as their collar information cannot be confirmed. The historical drilling was focused on the Man, Prime and Dillard mineralized zones.

Table 10-2 MPD Historical Drillhole Locations

Hole	Easting NAD83z10 (m)	Northing NAD83z10 (m)	Elevation (m)	Azimuth(degree)	Dip (degree)	Length (m)	Hole Type	Year
PR13-01	681947	5515885	1278	180	-70	468.6	DDH	2013
PR13-02	681947	5515885	1278	240	-50	821.3	DDH	2013
321-01	681339	5513840	1323	90	-45	209.39	DDH	1988
321-02	681391	5513869	1338	270	-45	227.06	DDH	1988
321-03	681551	5513869	1350	0	-90	160.01	DDH	1988
321-04	681518	5513870	1360	270	-45	252.06	DDH	1988
321-05	681438	5513823	1349	0	-90	199.63	DDH	1988
321-06	681418	5513768	1351	0	-90	154.5	DDH	1988
321-07	681397	5513923	1340	0	-90	148.4	DDH	1988
321-08	681265	5513724	1281	0	-90	157.58	DDH	1988
DH-65-1	681971	5515761	1290	135	-60	53.46	DDH	1965
DH-66-1	682895	5514613	1448	82	-45	129.22	DDH	1966
DH-66-2	682842	5514525	1438	70	-45	146.26	DDH	1966
DH-66-3	681973	5515891	1295	275	-45	62.48	DDH	1966
DH-66-4	681864	5515724	1276	80	-45	144.48	DDH	1966
DH-66-5	681852	5515723	1275	330	-60	55.44	DDH	1966
DH-67-1	682973	5514595	1456	135	-60	59.4	DDH	1967

Hole	Easting NAD83z10 (m)	Northing NAD83z10 (m)	Elevation (m)	Azimuth(degree)	Dip (degree)	Length (m)	Hole Type	Year
DH-67-2	682982	5514634	1457	300	-60	57.42	DDH	1967
DH-67-3	682950	5514592	1450	0	-90	50	DDH	1967
DH-67-4	683079	5514126	1425	0	-90	188.97	DDH	1967
DH-67-5	682997	5514631	1460	275	-45	94.18	DDH	1967
DH-67-7	681944	5515883	1285	170	-60	53.19	DDH	1967
DH-68-1	681307	5516030	1250	255	-45	153.36	DDH	1968
DH-68- 10	681941	5515863	1280	0	-90	93.57	DDH	1968
DH-68- 11	682961	5514474	1435	0	-90	16	DDH	1968
DH-68- 12	682961	5514474	1435	0	-90	39	DDH	1968
DH-68-2	681564	5515794	1251	250	-45	154.78	DDH	1968
DH-68-4	681272	5515763	1251	80	-45	304.8	DDH	1968
DH-68-5	681885	5515723	1277	225	-45	75.29	DDH	1968
DH-68-6	681837	5515654	1285	30	-45	56.8	DDH	1968
DH-68-7	681828	5515727	1265	225	-45	78.03	DDH	1968
DH-68-8	681864	5515797	1278	0	-90	33	DDH	1968
DH-68-9	681825	5515748	1265	0	-90	39.01	DDH	1968
DH-69-1	683357	5514074	1450	195	-45	252.76	DDH	1969
DH-69-2	683360	5514088	1451	0	-90	122.8	DDH	1969
DH-69-3	683504	5514177	1472	195	-45	74.98	DDH	1969
DH-69-4	683530	5513829	1458	195	-45	104.54	DDH	1969
DH-69- 09	683944	5513824	1472	200	-45	114.3	DDH	1969
DH-69- 10	683923	5513714	1480	200	-45	174.65	DDH	1969
694-001	681334	5513863	1322	0	-90	279.5	DDH	2007- 2010
694-002	681418	5513868	1342	0	-90	133.2	DDH	2007- 2010
694-003	681353	5513779	1321	90	-50	291.7	DDH	2007- 2010
694-004	681357	5513683	1314	90	-50	61.6	DDH	2007- 2010
694-005	681317	5513968	1292	90	-50	261.2	DDH	2007- 2010
694-006	681537	5513772	1373	270	-50	340.46	DDH	2007- 2010
694-007	681244	5513770	1286	90	-50	148.44	DDH	2007- 2010

Hole	Easting NAD83z10 (m)	Northing NAD83z10 (m)	Elevation (m)	Azimuth(degree)	Dip (degree)	Length (m)	Hole Type	Year
694-008	681160	5513772	1253	90	-50	242.32	DDH	2007- 2010
694-009	681218	5513635	1285	90	-50	264.3	DDH	2007- 2010
694-010	681146	5513956	1260	90	-50	164.59	DDH	2007- 2010
694-011	681144	5513956	1260	0	-90	96.62	DDH	2007- 2010
694-012	681244	5513770	1283	0	-90	248.11	DDH	2007- 2010
694-013	681203	5513804	1276	90	-50	267.31	DDH	2007- 2010
694-014	681169	5513853	1259	90	-50	229.82	DDH	2007-2010
694-015	680926	5514304	1142	90	-50	311.51	DDH	2007-2010
694-016	681605	5515735	1237	270	-50	232	DDH	2007-2010
694-017	681342	5515247	1198	90	-45	177.7	DDH	2007-2010
694-018	681366	5515583	1242	270	-50	224.64	DDH	2007- 2010
694-019	681355	5515565	1241	90	-55	67.4	DDH	2007- 2010
694-032	682012	5515888	1292	270	-50	199.95	DDH	2007- 2010
694-033	682014	5515838	1292	270	-50	46.94	DDH	2007- 2010
694-034	682014	5515838	1292	270	-65	200.25	DDH	2007- 2010
694-035	682016	5515762	1293	270	-50	101.19	DDH	2007- 2010
694-036	681638	5515886	1263	30	-50	300.84	DDH	2007- 2010
DH-69-5	683700	5513954	1479	15	-45	247.65	DDH	1969
DH-69-6	683797	5514271	1511	0	-90	182.27	DDH	1969
DH-69-7	683113	5514094	1423	195	-45	305.1	DDH	1969
DH-69-8	683111	5517831	1350	0	-90	151.8	DDH	1969
DH-80-1	681333	5513910	1326	90	-45	152.7	DDH	1980
DH-80-2	681337	5513852	1323	90	-45	199.7	DDH	1980
DH-80-3	681340	5513795	1322	90	-45	173.8	DDH	1980
DH-80-4	681342	5513990	1313	90	-45	165.8	DDH	1980
DH-80-5	681297	5513852	1309	90	-60	303.7	DDH	1980

Hole	Easting NAD83z10 (m)	Northing NAD83z10 (m)	Elevation (m)	Azimuth(degree)	Dip (degree)	Length (m)	Hole Type	Year
DH-80-6	681299	5513907	1308	90	-60	304.9	DDH	1980
DH-81-1	681352	5513723	1317	90	-45	233.5	DDH	1981
DH-81-2	681412	5513768	1349	90	-50	250	DDH	1981
DH-81-3	681249	5513892	1290	45	-50	182.9	DDH	1981
DH-81-4	681275	5514152	1280	45	-50	187.6	DDH	1981
DH-81-5	681065	5514028	1230	45	-50	201.8	DDH	1981
DH-81-6	681080	5513851	1230	45	-50	193.6	DDH	1981
858-020	681137	5513711	1249	90	-50	233.78	DDH	2007- 2010
858-021	681506	5513869	1357	0	-90	237.13	DDH	2007- 2010
858-022	681435	5513972	1328	0	-90	148.74	DDH	2007- 2010
858-023	681137	5513711	1249	0	-90	171.82	DDH	2007- 2010
858-024	681435	5513972	1328	90	-50	276.2	DDH	2007- 2010
858-025	681300	5513813	1312	90	-50	276.45	DDH	2007- 2010
858-026	681300	5513813	1312	0	-90	42	DDH	2007- 2010
858-027	681356	5513683	1314	0	-90	225	DDH	2007- 2010
858-028	681625	5513981	1373	0	-90	300.8	DDH	2007- 2010
858-029	681356	5513683	1314	90	-50	50.3	DDH	2007- 2010
858-031	681356	5513683	1314	90	-70	27.74	DDH	2007- 2010
D91-01	683375	5513758	1442	180	-51	171.3	DDH	1991
D91-02	683350	5514055	1450	180	-51	219.5	DDH	1991
D91-03	683301	5514661	1490	180	-52	197.51	DDH	1991
D91-04	683285	5514860	1502	180	-51	177.39	DDH	1991
D91-05	683103	5514702	1470	179	-50	188.06	DDH	1991
D91-06	683331	5514361	1457	184	-53	183.49	DDH	1991
D91-07	682934	5514933	1433	182	-50	183.31	DDH	1991
D91-08	682918	5514650	1444	181	-50	189.59	DDH	1991
D91-09	682926	5514339	1420	180	-50	189.59	DDH	1991
D91-10	683112	5514098	1420	181	-52.5	147.83	DDH	1991
D91-11	682938	5514137	1405	181	-50	183.49	DDH	1991
DI13-01	686239	5514600	1523	180	-60	512	DDH	2013
DI13-02	687251	5514029	1526	180	-60	500	DDH	2013

Hole	Easting NAD83z10 (m)	Northing NAD83z10 (m)	Elevation (m)	Azimuth(degree)	Dip (degree)	Length (m)	Hole Type	Year
DI13- 02a	687248	5514031	1526	180	-60	36	DDH	2013
DI13-03	683291	5513756	1473	0	-55	533	DDH	2013
DI13-04	683282	5514028	1447	0	-55	452	DDH	2013
DI13-05	683104	5514620	1470	180	-70	382.1	DDH	2013
DI13-06	682957	5514474	1428	0	-90	221	DDH	2013
DI14-07	683116	5514069	1421	355	-55	451	DDH	2014
DI14-08	683498	5514015	1465	352	-50	523	DDH	2014
DI14-09	683708	5513957	1466	354	-60	498	DDH	2014
DI14-10	683708	5513957	1466	180	-60	501	DDH	2014
DI14-11	683294	5514344	1453	0	-70	87	DDH	2014
DI14-12	683252	5514301	1445	0	-65	501	DDH	2014
DI14-13	685328	5513606	1538	120	-50	150	DDH	2014
DI14-14	685328	5513606	1538	294	-55	225	DDH	2014
DI14-15	685360	5513380	1566	308	-35	306.4	DDH	2014
DI14- 16b	686229	5514022	1553	270	-55	651	DDH	2014
DI14-16	686229	5514022	1553	270	-45	83.6	DDH	2014
DI14-17	685928	5514652	1482	105	-55	501	DDH	2014
DI14-18	685701	5514233	1492	90	-55	501	DDH	2014
DI14-19	683206	5514249	1437	175	-55	600	DDH	2014
						26345.23		

1965-1969 Primer Group and Pageant Mines Ltd. (Pageant)

Between 1965 and 1969, Primer Group and Pageant Mines Ltd. (Pageant) completed 33 diamond drill holes totalling 12,283.3 ft (3,744 m) on the Prime North Zone (now called the Prime Target) and the Prime South Zone (now called the Dillard Target). A combination of AQ and NQ size drill core was recovered. Drilling targeted anomalous copper that was identified from surface geochemical sampling. This drill campaign resulted in the discovery of Prime and Dillard mineralized zones. Significant intercepts from the 1965-1969 drilling campaign are illustrated in Table 10-3 (Tully, 1970).

Table 10-3 Pageant Mines Ltd. and Primer Group Minerals Ltd. 1966-1969 Diamond Drilling Significant Intercepts

Hole	From (m)	To (m)	Interval (m)	Cu (%)	Au (g/t)	Prospect
DH-69-1	40.2	49.4	9.1	0.4	No assays	Dillard
DH-69-1	79.9	247.2	167.3	0.23	No assays	Dillard
DH-69-7	9.1	305.1	296.0	0.17	No assays	Dillard
Including	187.5	190.5	3.0	0.76	No assays	Dillard
DH-68-5	14.6	75.3	60.7	0.22	No assays	Prime
DH-68-8	0.3	32.3	32.0	0.26	No assays	Prime

Including	24.4	30.5	6.1	0.66	No assays	Prime
DH-67-4	4.9	125.0	120.1	0.24	No assays	Dillard
DH-67-5	2.4	94.2	91.7	0.23	No assays	Dillard
DH-67-7	10.1	53.2	43.1	0.53	No assays	Prime
DH-66-1	9.1	127.4	118.3	0.22	No assays	Dillard
DH-66-4	1.8	61.3	59.4	0.29	No assays	Prime

Source: Tully (1970)

Intervals are core length. True width is unknown.

1980-1981 Newmont Exploration of Canada Limited (Newmont)

Between 1980 and 1981, Newmont completed 12 diamond drill holes, totalling 2,550 m on Man Zone. BQ size drill core was recovered. Drilling targeted the copper showing discovered on the boundary of the Prime and HG claims, which is now known as the Man Zone. This drill campaign was the first to test Man mineralization at depth (Visagie, 1981).

1988-1989 Brican Resources Ltd (Brican)

Between 1988 and 1989, Brican completed 8 diamond drill holes totalling 1,509 m on the Man Zone. A combination of BQ and NQ size drill core was recovered. Drilling targeted IP anomalies and expanded the mineralization discovered by Newmont in 1980. The diamond drill program on the Man property has shown a broad zone of significant copper-gold mineralization largely coincident with an IP anomaly (Wynne, 1989). Significant intercepts from the 1989 drilling campaign are illustrated in Table 10-4 (Wynne, 1989).

Table 10-4 Brican Resources Ltd. 1989 Diamond Drilling Significant Intercepts

Hole	From (m)	To (m)	Interval (m)	Cu (%)	Au (g/t)	Prospect
321-1	15.54	209.39	193.85	0.29	0.23	Man
Including	20	83	63	0.76	0.09	Man
321-2	45	125.75	80.75	0.18	0.31	Man
Including	45	96	51	0.24	0.37	Man
321-4	201	252.06	51.06	0.19	0.40	Man
Including	201	229	28	0.33	0.48	Man
321-8	89	157.58	68.58	0.18	0.09	Man

Source: Wynne (1989)

Intervals are core length. True width is unknown.

1991 Fairfield Minerals & Placer Dome Inc (Fairfield)

In 1991, Fairfield drilled 11 diamond drill holes totalling 2,031 m on Dillard Zone. NQ size drill core was recovered. The 1991 exploration program focussed on the area of coincident copper/gold geochemical and I.P. anomalies outlined in 1990. Drilling in 1991 intersected significant chalcopyrite mineralization, largely structurally controlled and hosted by alkalic monzonites, monzodiorites and diorites in the south and andesitic volcanics in the north of the Dillard area. Mineralization and alteration style was indicative of a volcanic-type porphyry copper model with a convective pattern of hydrothermal fluid flow (Cormier, 1992). The source of numerous anomalous surface gold was not identified. Fairfield also suggested that there is a good potential for significant gold-quartz vein or porphyry copper-gold deposits elsewhere on the property. Significant intercepts from the 1991 drilling campaign are illustrated in Table 10-5 (Cormier, 1992).

Table 10-5 Fairfield Minerals Ltd. 1991 Diamond Drilling Significant Intercepts

Hole	From (m)	To (m)	Interval (m)	Cu (%)	Au (g/t)	Prospect
D91-2	32.3	219.5	187.2	0.24	0.10	Dillard
Including	32.3	98	65.7	0.35	0.15	Dillard
D91-3	125.3	192.6	67.3	0.15	0.06	Dillard
Including	125.3	151.2	25.9	0.22	0.06	Dillard
D91-5	77.7	125.9	48.2	0.28	0.09	Dillard
Including	158.2	188.1	29.9	0.3	0.11	Dillard
D91-8	9.1	189.6	180.5	0.13	0.02	Dillard
Including	53.9	123.1	69.2	0.19	0.07	Dillard
D91-10	9.1	147.2	138.1	0.19	0.07	Dillard
Including	9.1	66.1	57	0.22	0.08	Dillard

Source: Cormier (1992)

Intervals are core length. True width is unknown.

2007-2010 Candorado Operating Company Ltd (Candorado) and GWR Resources Inc. (GWR)

Drilling included the following: 19 holes totalling 4,042 m in 2007; 11 holes totalling 1,988 m in 2008; and 5 holes totalling 849 m in 2010. NQ drill core size was used. Focus of drilling was the Man and Prime mineralized zones. The 2007-2010 drilling campaign successfully expanded the know mineralization in both zones. Significant intercepts from the 1989 drilling campaign are illustrated in Table 10-6 (Gilmour and Koffyberg, 2010).

Table 10-6 Candorado-GWR Resources 2007-2010 Drilling Significant Intercepts

Hole	From (m)	To (m)	Interval (m)	Cu (%)	Au (g/t)	Prospect
694-001	50.1	74.1	24	0.33	0.42	Man
694-001	172.1	200.1	28	0.05	0.58	Man
694-002	38	50	12	0.56	No significant results	Man
694-002	60	76	16	0.12	0.52	Man
694-003	78	89.5	11.5	0.26	0.4	Man
694-003	140	150	10	0.2	0.16	Man
694-003	169	201	32	0.24	0.14	Man
694-007	78	90	12	0.43	No significant results	Man
694-007	120	126	6	0.28	0.17	Man
694-007	138	142	4	0.24	0.33	Man
694-008	12.2	19	6.8	0.17	No significant results	Man
694-008	45	65	20	0.18	0.19	Man
694-008	87	207	120	0.21	0.92	Man
Including	145	167	22	0.35	1.41	Man
Including	187	201	14	0.15	1.49	Man
694-012	102	194	92	0.21	0.39	Man
Including	102	110	8	0.3	0.91	Man
Including	122	144	22	0.39	0.87	Man

Hole	From (m)	To (m)	Interval (m)	Cu (%)	Au (g/t)	Prospect
694-013	51	141	90	0.2	0.39	Man
Including	67	123	56	0.26	0.46	Man
694-016	61	93	32	0.17	No significant results	Prime
694-016	123	133	10	0.23	No significant results	Prime
694-016	143	157	14	0.14	No significant results	Prime
858-021	133.3	147.3	14	0.22	0.61	Man
Including	133.3	143.3	10	0.28	0.84	Man
858-021	191.3	197.3	6	0.12	No significant results	Man
858-022	62	86	24	0.22	No significant results	Man
Including	84	86	2	0.09	0.31	Man
858-022	104	110	6	0.16	0.57	Man

Source: Gilmour and Koffyberg (2010).

Intervals are core length. True width is unknown.

2013 Sunrise Resources Ltd (Sunrise)

Sunrise completed two diamond drill holes totalling 1,290 m on the Prime zone in 2013. NQ drill core size was used. The Sunrise drilling was the first to test mineralization at depth in the Prime zone. The results were very encouraging, and this drilling essentially penetrated the outskirts of the Gate mineralization. Significant intercepts from the 2013 drilling campaign are illustrated in Table 10-7 (Murton, 2014).

Table 10-7 Sunrise Resources 2013 Drilling Significant Intercepts

Hole	From (m)	To (m)	Interval (m)	Cu (%)	Au (g/t)	Prospect
PR 13-01	7.7	468.6	460.9	0.1	0.043	Gate-Prime
Including	345	468.6	123.6	0.25	0.085	Gate-Prime
Including	444	468.6	24.6	0.343	0.066	Gate-Prime
PR 13-02	72	96	24	0.132	0.009	Gate-Prime
PR 13-02	249	258	9	0.283	0.092	Gate-Prime
PR 13-02	561	645	84	0.165	0.027	Gate-Prime
Including	621	645	24	0.254	0.042	Gate-Prime
PR 13-02	668.3	821.3	153	0.206	0.045	Gate-Prime
Including	735	756	21	0.235	0.045	Gate-Prime
Including	786	798	12	0.328	0.073	Gate-Prime

Source: Murton (2014).

Intervals are core length. True width is unknown.

2013-2014 Fjordland Exploration Inc. (Fjordland)

In 2013, Fjordland completed seven diamond drill holes totalling 2,636.1m, followed by a 2014 program with 14 diamond drill holes totalling 5,574.1 m. All of the Fjordland drill size was NQ. The main focus of the 2013 Fjordland drill program was to test the depth potential of mineralization at the Dillard area where historical drilling previously intersected and terminated in zones of copper porphyry mineralization. Additionally, deep IP chargeability targets were tested. High chargeability targets were generally found to be related to higher pyrite concentrations. The follow-up 2014 drilling program was designed to understand the geometry of geology and mineralization, and the continuity of mineralization at depth. Fjordland also tested anomalous

surface copper and gold in the Dillard East area. The conclusion was that porphyry-type copper mineralization in the Dillard East area is probably present at deeper levels (Peters, 2015). Significant intercepts from the 2013-2014 drilling campaign are illustrated in Table 10-8 (Peters, 2014 and 2015).

Table 10-8 Fjordland 2013-2014 Drilling Significant Intercepts

Hole	From (m)	To (m)	Interval (m)	Cu (%)	Au (g/t)	Prospect
DI13-04	49	452	403	0.136	0.07	Dillard
Including	49	342.5	293.5	0.164	0.08	Dillard
Including	49	207.5	158.5	0.201	0.09	Dillard
DI13-05	5	382.1	377.1	0.109	0.04	Dillard
Including	5	68	63	0.163	0.04	Dillard
Including	5	62.5	30	0.187	0.06	Dillard
Including	92	248	156	0.135	0.05	Dillard
Including	95	146	51	0.184	0.06	Dillard
Including	296	368	72	0.103	0.05	Dillard
DI14-07	19	121	102	0.17	0.07	Dillard
Including	46	118	72	0.2	0.06	Dillard
DI14-07	247	280	33	0.17	0.09	Dillard
DI14-19	55.5	66	10.5	0.15	0.04	Dillard
DI14-19	105	258	153	0.2	0.09	Dillard
DI14-19	129	231	102	0.23	0.10	Dillard
DI14-19	303	312	9	0.25	0.10	Dillard
DI14-19	333	360	27	0.16	0.09	Dillard

Source: Peters (2014; 2015)

Intervals are core length. True width is unknown.

10.1.2 Axe Historical Drilling

Early exploration on the Axe property dates to the 1920s. Work conducted between the 1920s and 1965 is not documented. Drilling at the historical Axe property totaled 24,437 m in 267 holes completed by previous operators between 1967 and 2018 (Table 10-9).

Table 10-9 Axe Historical Drill hole Locations

Hole	Easting NAD83 z 10	Northing NAD83 z 10	Elevation (m)	Azimuth	Dip	Length (m)	Hole Type	Year
M-001	678541	5501674	1311	60	-60	134.72	DDH	1967
M-002	678621	5501503	1311	0	-90	130.15	DDH	1967
M-003	678693	5501390	1295	0	-90	67.97	DDH	1967
M-004	678702	5501619	1280	0	-90	107.29	DDH	1967
M-005	678475	5501544	1311	0	-90	56.69	DDH	1967
M-006	678868	5501356	1158	320	-75	56.39	DDH	1967
M-007	678573	5501407	1311	0	-90	99.97	DDH	1967
RDH-1	678960	5501664	1106	0	-90	304.8	PERC	1968
RDH-2	678413	5502928	1244	0	-90	204.22	PERC	1968

Hole	Easting NAD83 z 10	Northing NAD83 z 10	Elevation (m)	Azimuth	Dip	Length (m)	Hole Type	Year
RDH-3	678599	5502176	1234	0	-90	277.37	PERC	1968
RDH-4	678522	5501825	1311	0	-90	222.5	PERC	1968
D69-01	678582	5501839	1311	270	-45	303.89	DDH	1969
D69-02	678753	5501528	1280	270	-45	243.54	DDH	1969
D69-03	678470	5501684	1311	270	-45	152.4	DDH	1969
D69-04	677503	5503353	1402	0	-90	121.9	DDH	1969
D69-05	677463	5503202	1402	0	-90	151.79	DDH	1969
D69-06	677495	5503054	1410	250	-45	155.45	DDH	1969
D69-07	677379	5502759	1396	10	-45	200.25	DDH	1969
D69-08	677379	5502759	1396	0	-90	152.4	DDH	1969
D69A-1	678490	5501646	1311	0	-90	136.86	DDH	1969
D69A-3	678444	5501753	1302	270	-45	143.26	DDH	1969
D71-03	678895	5502532	1042	270	-60	199	DDH	1971
D71-04	678848	5502413	1065	270	-60	198.73	DDH	1971
D71-05	678576	5502399	1140	270	-45	182.88	DDH	1971
D71-06	678535	5502729	1120	250	-45	188.98	DDH	1971
D71-07	678800	5502789	979	270	-60	199.95	DDH	1971
D71-08	679057	5501768	1135	270	-45	198.42	DDH	1971
D71-09	678795	5501722	1250	270	-45	171.6	DDH	1971
PA-01	678495	5501635	1311	0	-90	82.3	PERC	1971
PA-02	678609	5501633	1311	0	-90	103.63	PERC	1971
PA-03	678741	5501546	1280	0	-90	94.49	PERC	1971
PA-04	678761	5501432	1292	0	-90	103.63	PERC	1971
PA-05	678900	5501443	1143	0	-90	36.58	PERC	1971
PA-06	679915	5501582	1158	0	-90	54.86	PERC	1971
PA-06A	678913	5501511	1143	0	-90	60.96	PERC	1971
PA-07	679143	5501912	1097	0	-90	67.06	PERC	1971
PA-08	679048	5502093	1082	0	-90	57.91	PERC	1971
PA-09	678943	5502207	1067	0	-90	79.25	PERC	1971
PA-10	678344	5502396	1265	0	-90	18.29	PERC	1971
PA-11	678408	5502127	1301	0	-90	60.96	PERC	1971
PA-12	678420	5502032	1314	0	-90	60.96	PERC	1971
PA-13	678450	5501892	1311	0	-90	91.44	PERC	1971
PA-14	678368	5501968	1311	0	-90	91.44	PERC	1971
PA-15	678277	5502144	1332	0	-90	91.44	PERC	1971
PA-16	678187	5502578	1280	0	-90	24.38	PERC	1971
PA-17	678421	5502700	1173	0	-90	18.29	PERC	1971
PA-17A	678421	5502701	1173	0	-60	18.29	PERC	1971
PA-18	678452	5503034	1228	0	-90	30.48	PERC	1971
PA-19	678486	5503153	1241	0	-90	18.29	PERC	1971
PA-20	678444	5502803	1158	0	-90	36.58	PERC	1971
PA-21	678572	5502909	1146	0	-90	30.48	PERC	1971
PA-22	678519	5502745	1120	0	-90	67.06	PERC	1971

Hole	Easting NAD83 z 10	Northing NAD83 z 10	Elevation (m)	Azimuth	Dip	Length (m)	Hole Type	Year
PA-23	678543	5502600	1082	0	-90	18.29	PERC	1971
PA-24	678584	5501557	1311	0	-90	106.68	PERC	1971
PA-25	678428	5501812	1323	0	-90	106.68	PERC	1971
PA-26	677668	5503669	1436	0	-90	30.48	PERC	1971
PA-27	677512	5503320	1402	0	-90	94.49	PERC	1971
PA-28	677532	5503254	1402	0	-90	106.68	PERC	1971
PA-29	677404	5503201	1402	0	-90	64.01	PERC	1971
PA-30	677369	5503142	1402	0	-90	100.58	PERC	1971
PA-31	677421	5503016	1402	0	-90	73.15	PERC	1971
PA-32	677353	5503028	1402	0	-90	100.58	PERC	1971
PA-33	677254	5502977	1402	0	-90	82.3	PERC	1971
PA-34	677383	5502880	1402	0	-90	70.1	PERC	1971
PA-35	677294	5502654	1402	0	-90	106.68	PERC	1971
PA-36	677456	5502817	1402	0	-90	33.53	PERC	1971
PA-37	677350	5502829	1402	0	-90	45.72	PERC	1971
PA-38	678635	5501503	1311	0	-90	54.86	PERC	1971
PA-39	677471	5503185	1402	0	-90	45.72	PERC	1971
PA-40	677492	5503038	1402	0	-90	106.68	PERC	1971
PA-41	677275	5503646	1463	0	-90	100.58	PERC	1971
PA-42	677516	5502819	1402	0	-90	30.48	PERC	1971
PA-43	678746	5501362	1250	0	-90	60.96	PERC	1971
PA-44	678737	5501244	1237	0	-90	39.62	PERC	1971
PA-45	677496	5503112	1402	0	-90	106.68	PERC	1971
PA-46	678720	5501192	1234	0	-90	33.53	PERC	1971
PA-47	677431	5502966	1402	0	-90	64.01	PERC	1971
PA-48	678689	5502381	1155	0	-90	27.43	PERC	1971
PA-49	678363	5500753	1274	0	-90	27.43	PERC	1971
PA-50	678543	5502413	1146	0	-90	30.48	PERC	1971
D72-01	678446	5502755	1173	283	-50	110.95	DDH	1972
D72-02	678449	5502761	1180	284	-50	92.35	DDH	1972
D72-03	678502	5502814	1180	284	-50	186.96	DDH	1972
D72-04	678619	5502090	1219	226	-45	409.34	DDH	1972
D72-05	677322	5502964	1408	90	-45	269.44	DDH	1972
D72-06	677338	5503053	1408	90	-45	153.01	DDH	1972
D72-07	677322	5502900	1390	90	-45	93.27	DDH	1972
D72-08	678863	5501342	1186	240	-45	127.41	DDH	1972
D72-09	677322	5502855	1396	90	-45	89.61	DDH	1972
D72-10	678620	5502014	1295	0	-90	64.31	DDH	1972
D72-11	678461	5502808	1173	0	-90	82.6	DDH	1972
D72-12	678544	5501638	1326	270	-45	171.3	DDH	1972
D72-13	678524	5501682	1326	270	-45	178.92	DDH	1972
D72-14	678589	5501643	1320	270	-45	214.58	DDH	1972
D72-15	678619	5502090	1219	135	-45	76.2	DDH	1972

Hole	Easting NAD83 z 10	Northing NAD83 z 10	Elevation (m)	Azimuth	Dip	Length (m)	Hole Type	Year
D72-16	678504	5501758	1332	270	-45	152.4	DDH	1972
D72-17	678531	5502910	1195	285	-50	97.54	DDH	1972
D72-18	678533	5502962	1195	285	-40	123.75	DDH	1972
D72-2A	678440	5502776	1180	284	-50	102.78	DDH	1972
D73-01	678411	5502809	1219	0	-90	155.45	DDH	1973
D73-02	678439	5502858	1219	0	-90	157.58	DDH	1973
D73-03	678540	5502817	1136	0	-90	106.07	DDH	1973
P-001	677748	5501306	1295	0	-90	33.53	PERC	1973
P-002	677487	5501560	1326	0	-90	19.81	PERC	1973
P-003	676822	5501624	1373	0	-90	21.34	PERC	1973
P-004	676394	5501663	1370	0	-90	19.81	PERC	1973
P-005	678058	5501410	1306	0	-90	39.62	PERC	1973
P-006	678406	5501582	1298	0	-90	23.77	PERC	1973
P-007	677864	5502597	1378	0	-90	30.48	PERC	1973
P-008	677819	5503014	1396	0	-90	30.48	PERC	1973
P-009	677692	5503308	1399	0	-90	30.48	PERC	1973
P-010	677443	5503857	1449	0	-90	18.29	PERC	1973
P-011	676895	5504535	1411	0	-90	18.29	PERC	1973
P-012	675778	5502894	1417	0	-90	30.48	PERC	1973
P-013	676643	5502766	1381	0	-90	42.67	PERC	1973
P-014	677016	5502901	1378	0	-90	33.53	PERC	1973
P-015	677449	5503246	1417	0	-90	76.2	PERC	1973
P-016	676812	5504834	1428	0	-90	33.53	PERC	1973
P-017	677607	5504832	1396	0	-90	36.58	PERC	1973
P-018	677709	5504852	1393	0	-90	15.24	PERC	1973
P-019	677769	5505281	1405	0	-90	15.24	PERC	1973
P-020	677840	5505784	1399	0	-90	33.53	PERC	1973
P-021	678223	5505348	1390	0	-90	30.48	PERC	1973
P-022	677863	5505047	1382	0	-90	30.48	PERC	1973
P-023	678429	5505076	1326	0	-90	21.34	PERC	1973
P-024	678402	5504692	1298	0	-90	25.91	PERC	1973
P-025	677910	5503907	1326	0	-90	30.48	PERC	1973
P-026	678021	5502961	1344	0	-90	12.19	PERC	1973
P-027	678461	5502808	1173	0	-90	30.48	PERC	1973
P-028	678439	5502759	1178	0	-90	18.29	PERC	1973
P-029	676970	5502853	1378	0	-90	76.2	PERC	1973
P-030	677057	5502872	1378	0	-90	76.2	PERC	1973
P-031	677054	5502942	1379	0	-90	76.2	PERC	1973
P-032	676967	5502935	1375	0	-90	76.2	PERC	1973
P-033	678563	5502859	1143	0	-90	44.5	PERC	1973
P-034	678527	5502797	1143	0	-90	60.96	PERC	1973
P-035	678512	5502770	1158	0	-90	76.2	PERC	1973
P-036	678516	5502716	1189	0	-90	27.43	PERC	1973

Hole	Easting NAD83 z 10	Northing NAD83 z 10	Elevation (m)	Azimuth	Dip	Length (m)	Hole Type	Year
P-037	678521	5502670	1158	0	-90	24.38	PERC	1973
P-038	678500	5502749	1155	0	-90	33.53	PERC	1973
P-039	678584	5502820	1122	0	-90	60.96	PERC	1973
P-040	678617	5502868	1089	0	-90	21.34	PERC	1973
P-041	678595	5502836	1125	0	-90	15.24	PERC	1973
P-042	678498	5502780	1125	0	-90	21.34	PERC	1973
P-043	678518	5502729	1122	0	-90	53.34	PERC	1973
P-044	678575	5502716	1119	0	-90	56.39	PERC	1973
P-045	678569	5502849	1122	0	-90	18.29	PERC	1973
P-046	678586	5502872	1122	0	-90	12.19	PERC	1973
P-047	678593	5502903	1219	0	-90	67.06	PERC	1973
P-048	678404	5502679	1186	0	-90	45.72	PERC	1973
P-049	678432	5502726	1186	0	-90	30.48	PERC	1973
P-050	678498	5502842	1167	0	-90	24.38	PERC	1973
P-051	678524	5502863	1161	0	-90	54.86	PERC	1973
P-052	678478	5502936	1204	0	-90	24.38	PERC	1973
P-053	678464	5502904	1204	0	-90	64.01	PERC	1973
P-054	678450	5502874	1204	0	-90	45.72	PERC	1973
P-055	678431	5502846	1204	0	-90	50.29	PERC	1973
P-056	678604	5502803	1097	0	-90	33.53	PERC	1973
P-057	678615	5502821	1097	0	-90	24.38	PERC	1973
P-058	678621	5502841	1097	0	-90	36.58	PERC	1973
P-059	678647	5502692	1061	0	-90	21.34	PERC	1973
P-060	678586	5502781	1106	0	-90	30.48	PERC	1973
P-061	678581	5502760	1106	0	-90	27.43	PERC	1973
P-062	678540	5502746	1109	0	-90	13.72	PERC	1973
P-063	678588	5502046	1286	0	-90	91.44	PERC	1973
P-064	678631	5502013	1280	0	-90	22.86	PERC	1973
P-065	678658	5502037	1268	0	-90	91.44	PERC	1973
P-066	678706	5501987	1265	0	-90	91.44	PERC	1973
P-067	678547	5502160	1256	0	-90	18.29	PERC	1973
P-068	678574	5502142	1256	0	-90	25.91	PERC	1973
P-069	678602	5502121	1256	0	-90	24.38	PERC	1973
P-070	678590	5502126	1256	0	-90	44.2	PERC	1973
P-071	678601	5502104	1256	0	-90	30.48	PERC	1973
P-072	678636	5502086	1256	0	-90	30.48	PERC	1973
P-073	678688	5502069	1250	0	-90	30.48	PERC	1973
P-074	678740	5502057	1244	0	-90	21.34	PERC	1973
D82-01	678707	5502790	1060	0	-90	114.3	DDH	1982
D82-02	678741	5502984	1060	270	-45	109.42	DDH	1982
D82-03	678556	5502780	1096	270	-45	193.55	DDH	1982
D82-04	679265	5501553	1052	270	-45	116.74	DDH	1982
D82-05	679256	5502339	920	270	-45	124.66	DDH	1982

Hole	Easting NAD83 z 10	Northing NAD83 z 10	Elevation (m)	Azimuth	Dip	Length (m)	Hole Type	Year
D82-06	679911	5501682	894	90	-45	106.98	DDH	1982
A-01	679745	5501269	897	0	-90	60	PERC	1991
A-01a	679787	5501270	876	0	-90	70	PERC	1991
A-02	679775	5501434	875	0	-90	80	PERC	1991
A-03	679679	5501561	917	0	-90	70	PERC	1991
A-04	679648	5501430	917	0	-90	91.5	PERC	1991
A-05	679533	5501574	955	0	-90	91.5	PERC	1991
A-06	679593	5501708	936	0	-90	27.4	PERC	1991
A-07	679534	5501938	882	0	-90	90	PERC	1991
A-09	679423	5502045	892	0	-90	90	PERC	1991
A-10	679656	5501870	890	0	-90	12.2	PERC	1991
A-11	679765	5501778	877	0	-90	90	PERC	1991
A04-01	678513	5502782	1140	0	-90	100.6	DDH	2004
A04-02	678513	5502782	1140	270	-45	100.6	DDH	2004
A04-03	678489	5502837	1204	0	-90	96.62	DDH	2004
A04-04	678454	5502794	1204	0	-90	75.61	RC	2004
A04-05	678483	5502831	1204	0	-90	75.61	RC	2004
A04-06	678519	5502796	1160	0	-90	69.51	RC	2004
A04-07A	678535	5502828	1160	265	-75	72.11	RC	2004
A06-01	677343	5503098	1410	0	-75	39	DDH	2006
A06-02	677384	5502929	1400	270	-80	215	DDH	2006
A06-03	677404	5502754	1390	200	-67	198	DDH	2006
A06-04	677895	5503995	1366	110	-60	110	DDH	2006
A06-05	677449	5503189	1415	270	-75	127.1	DDH	2006
A07-06	677389	5503031	1405	0	-90	395	DDH	2007
A07-07	677388	5503349	1418	0	-90	245.2	DDH	2008
A07-08	677397	5502822	1400	270	-85	367.9	DDH	2009
A09-01	677481	5503190	1419	270	-50	75.3	DDH	2009
A09-02	678326	5502033	1329	0	-90	242.38	DDH	2009
A09-03	677419	5503141	1410	90	-71	89.62	DDH	2009
A09-04	677409	5503224	1414	69	-70	96.01	DDH	2009
A07-09	677392	5502636	1420	225	-80	299.3	DDH	2010
A07-10	677322	5502927	1405	270	-80	264	DDH	2011
A07-11	677408	5502932	1397	0	-90	291.2	DDH	2012
A07-12	677965	5502536	1390	70	-75	300.3	DDH	2013
14A-01	678367	5501666	1324	90	-45	450	DDH	2014
14A-02	678298	5501987	1332	69	-50	390	DDH	2014
14A-03	677175	5502741	1405	90	-45	383.26	DDH	2014
14A-04	677556	5503020	1410	270	-50	371.4	DDH	2014
A07-13	678310	5501929	1331	0	-90	251.52	DDH	2014
A07-14	677385	5502637	1402	0	-90 -	300.3	DDH	2015
AXD18-01	677360	5503186	1414	66.3	71. 2	456.5	DDH	2018

Hole	Easting NAD83 z 10	Northing NAD83 z 10	Elevation (m)	Azimuth	Dip	Length (m)	Hole Type	Year
AXD18-02	678481	5501278	1332	20.3	54. 9	639	DDH	2018
AXD18-03	677960	5502121	1380	75.8	70. 9	343.1	DDH	2018
AXD18-04	678316	5502662	1248	38.6	60. 7	675	DDH	2018
AXR18-01	677609	5503555	1421	0	-90	19.51	RC	2018
AXR18-02	677740	5503195	1416	0	-90	16.46	RC	2018
AXR18-03	677800	5502790	1418	0	-90	16.46	RC	2018
AXR18-04	677690	5502556	1411	0	-90	14.93	RC	2018
AXR18-05	677988	5502429	1382	0	-90	8.84	RC	2018
AXR18-06	678068	5502153	1375	0	-90	49.99	RC	2018
AXR18-07	677815	5502014	1386	0	-90	11.89	RC	2018
AXR18-08	678094	5501887	1348	0	-90	13.41	RC	2018
AXR18-09	678068	5501605	1340	0	-90	40.84	RC	2018
AXR18-10	677959	5501194	1331	0	-90	43.13	RC	2018
AXR18-11	677632	5501414	1331	0	-90	16.46	RC	2018
AXR18-12	677369	5501740	1352	0	-90	25.6	RC	2018
AXR18-13	677141	5502066	1365	0	-90	7.31	RC	2018
AXR18-14	676861	5501797	1390	0	-90	10.36	RC	2018
AXR18-15	676572	5501575	1383	0	-90	16.46	RC	2018
AXR18-16	676967	5501643	1383	0	-90	19.51	RC	2018
AXR18-17	677307	5500455	1370	0	-90	7.31	RC	2018
AXR18-18	676729	5500793	1361	0	-90	7.31	RC	2018
AXR18-19	676917	5500462	1351	0	-90	5.79	RC	2018
AXR18-20	677018	5500201	1339	0	-90	7.31	RC	2018
AXR18-21	678652	5500277	1227	0	-90	14.93	RC	2018
AXR18-22	678709	5499882	1205	0	-90	21.03	RC	2018
AXR18-23	678454	5500754	1246	0	-90	22.55	RC	2018
AXR18-24	678370	5501031	1259	0	-90	17.98	RC	2018
AXR18-25	677683	5500974	1337	0	-90	13.41	RC	2018
AXR18-26	677708	5500673	1329	0	-90	7.31	RC	2018
AXR18-27	677773	5500326	1317	0	-90	5.79	RC	2018
AXR18-28	678199	5501039	1295	0	-90	10.36	RC	2018
AXR18-28A	678198	5501026	1295	0	-90	30.17	RC	2018
AXR18-29	678022	5502314	1383	0	-90	11.89	RC	2018
AXR18-30	678121	5500448	1299	0	-90	17.98	RC	2018
AXR18-31	678093	5500762	1305	0	-90	19.51	RC	2018
AXR18-31A	677987	5500812	1323	0	-90	13.41	RC	2018
AXR18-32	677256	5501911	1360	0	-90	19.51	RC	2018
AXR18-33	676753	5502801	1390	0	-90	14.93	RC	2018
AXR18-34	676867	5503723	1429	0	-90	8.84	RC	2018

Hole	Easting NAD83 z 10	Northing NAD83 z 10	Elevation (m)	Azimuth	Dip	Length (m)	Hole Type	Year
AXR18-35	677668	5502780	1404	0	-90	11.89	RC	2018
AXR18-36	677557	5502540	1396	0	-90	24.08	RC	2018
AXR18-37	677790	5502950	1417	0	-90	17.98	RC	2018
AXR18-38	676990	5502342	1385	0	-90	17.98	RC	2018
AXR18-39	676809	5502006	1396	0	-90	14.93	RC	2018
Total 267						24436.8 3		

1967 Meridian Syndicate (Meridian)

In 1967, Meridian drilled 7 vertical diamond drill holes totalling 2,143 ft (653 m) on South Zone. BQ size drill core was recovered. Significant intercepts from the 1967 drilling campaign are illustrated in Table 10-10 (Morton and Christoffersen, 1971).

Table 10-10 Meridian 1967 Drilling Significant Intercepts

Hole	From (m)	To (m)	Interval (m)	Cu (%)	Au (g/t)	Prospect
M-2	0	91	91	0.29	No assays	South Zone
Including	15	49	34	0.45	No assays	South Zone
M-7	61	97.5	36.5	0.28	No assays	South Zone
M-4	61	97.5	36.5	0.30	No assays	South Zone
M-6	36.5	55	18.5	0.28	No assays	South Zone

Source: Morton and Christoffersen (1971) Intervals are core length. True width is unknown.

1968 Quintana Minerals (Quintana)

In 1968, Quintana drilled 4 rotary holes totalling 3,310 ft (1,009 m) on South and Adit Zones (Morton and Christoffersen, 1971).

1969-1973 Adonis Mines (Adonis) and AMAX

The vast majority of drilling on Axe claim block was completed between 1969 and 1973 by Adonis Mines and AMAX. 39 diamond drill holes totalling 6,317 m and 126 percussion holes totalling 6,018 m were completed on Axe claims. Drilling significantly expanded mineralization on the West, South and Adit zones. A combination of BQ and NQ size drill core was recovered. Significant intercepts from the 1967 drilling campaign are illustrated in Table 10-11 (Morton and Christoffersen, 1971; Malcolm, 1973).

Table 10-11 1969-1973 Adonis Mines and AMAX Drilling Significant Intercepts

Hole	From (m)	To (m)	Interval (m)	Cu (%)	Au (g/t)	Prospect
69A-1	0	134	134	0.35	No assays	South
Including	21	103.6	82.6	0.42	No assays	South
69A-3	9.1	70.1	61.0	0.37	No assays	South
69-1	64.0	103.6	39.6	0.28	No assays	South

Hole	From (m)	To (m)	Interval (m)	Cu (%)	Au (g/t)	Prospect
69-1	100.6	112.8	12.2	0.28	No assays	South
69-2	134.1	189.0	54.9	0.36	No assays	South
Including	207.3	234.7	27.4	0.27	No assays	South
69-3	30.5	100.6	70.1	0.36	No assays	South
71-9	149.4	171.6	22.3	0.26	No assays	South
72-1	0.0	67.1	67.1	0.85	No assays	Adit
72-2A	27.4	51.8	24.4	0.41	No assays	Adit
72-11	0.0	82.6	82.6	0.29	No assays	Adit
73-3	0.0	106.1	106.1	0.52	No assays	Adit
69-5	6.1	73.2	67.1	0.24	No assays	West
72-9	21.3	87.8	66.4	0.19	No assays	West
PA-31	0.0	45.7	45.7	0.23	No assays	West

Source: Morton and Christoffersen (1971), Malcolm, 1973 Intervals are core length. True width is unknown.

1982 Cominco Ltd (Cominco)

In 1982, Cominco drilled 6 diamond drill holes totalling 766 m on Axe claims, focusing on South and Adit Zones. All of with the core was NQ size. Cominco also relogged and re-assayed available core and drill cuttings from earlier Adonis/AMAX historical drilling. For the first time, Cominco suggested that the prospects in Axe claims are alkaline type porphyry copper mineralization (Mehner, 1982).

1991 Cominco Ltd (Cominco)

In 1991, Cominco completed a percussion drill program (11 holes totaling 375 m) in an area of gold-in-soil anomalies coinciding with IP chargeability located to the west of 1516 zone. Only 4 holes were able to reach the bedrock, and the copper and gold values obtained were too low to be of immediate economic interest (Aulis, 1991a).

2004-2009 Bearclaw Capital Corp (Bearclaw)-Weststar Resources Ltd (Weststar)

In 2004, Bearclaw completed a drill program: 3 diamond drill holes and 4 reverse circulation drill holes totalling 590.66 m, before optioning the property to Weststar in 2005. 2004 drill campaign focused on the Adit Zone to test the oxide copper potential of the weathered zone. They also tried to confirm some of the historic 1969-1973 Adonis-AMAX percussion drilling. The 2004 drilling program was not able to reproduce the grade of mineralization. Bearclaw suggested it might be due to the difference in sample collection (Carpenter, 2005). HQ size drill core was recovered. Between 2005 and 2007, Weststar completed 3,401 metres of diamond drilling in 14 holes (Kerr, 2008). This second drill campaign mostly focused on the West zone and highlight the gold mineralization potential. A limited drilling program focusing on the West Zone, 4 diamond drill holes totaling 503 m, was completed in 2009. A combination of NQ and HQ size drill core was recovered for the 2006-2009 drill programs. Significant intercepts from the 2004-2009 drilling campaign are illustrated in Table 10-12 (Carpenter, 2005; Kerr, 2007 and 2008; Fraser, 2009).

Table 10-12 2004-2009 Bearclaw and Weststar Drilling Significant Intercepts

Hole	From (m)	To (m)	Interval (m)	Cu (%)	Au (g/t)	Prospect
A04-05	4	75.6	71.7	0.32	Not significant	Adit
A06-03	18	124.5	106.5	0.2	0.15	West
A07-06	16.5	304.5	288.0	0.27	0.15	West
including	85.5	97.5	12.0	0.53	0.28	West
A07-08	121.5	246.0	124.5	0.38	0.22	West
including	234.0	244.5	10.5	1.55	0.94	West
A07-13	4.5	102.0	97.5	0.17	Not significant	South
A09-03	46.0	54.4	8.4	0.75	5.04	West
including	47.2	50.3	3.1	0.001	9.25	West
including	50.3	53.4	3.1	2	4.39	West

Source: Carpenter (2005), Kerr (2007), (2008), Fraser (2009)

Intervals are core length. True width is unknown

2014 Copper Mountain Mining Corp. (Copper Mountain)

In 2014, Copper Mountain completed 4 NQ size diamond drill holesin the West and South Zones for a total of 1,595 m.

2018 Evrim Resources Corporation (Evrim)

In 2017, Evrim relogged some of the core from Weststar. This reinterpreted geologic framework was combined with an inversion of the 2012 airborne magnetic data to identify targets for follow-up drill testing. During the 2018 drill campaign, a total of 2,113.6 metres of diamond drilling was completed in four holes: one hole each in the West, South, Adit and Ohio zones. HQ size drill core was recovered. Targets were deep seated magnetic high geophysical anomalies. Evrim also conducted an RC drilling program to test the till-to-bedrock interface over a four by three- kilometre area with particular focus on areas with high magnetic anomalies. RC drilling totaled 695.3 metres in 39 holes. Significant intercepts from the 2018 drilling campaign are illustrated in Table 10-13 (Harris, 2019).

Table 10-13 2018 Evrim Drilling Significant Intercepts

Hole	From (m)	To (m)	Interval (m)	Cu (%)	Au (g/t)	Prospect
AXD18-01	2.6	44	41.4	0.1	0.45	West
including	2.6	16.5	13.9	0.21	0.4	West
AXD18-02	156.0	192.1	36.1	0.18	0.07	South
AXD18-02	596.3	633.0	36.7	0.29	0.08	South
including	600.0	624.0	24.0	0.34	0.095	South
AXD18-04	196.0	224.0	28.0	0.23	0.14	Adit
AXD18-04	270.0	333.0	63.0	0.2	0.02	Adit
including	311.0	319.0	8.0	0.63	0.036	Adit

Source: Harris (2019)

Intervals are core length. True width is unknown

10.1.3 Aspen Grove Drilling

The Aspen Grove area has been prospected since around 1900 when discoveries of high-grade copper were made near the settlement of Aspen Grove, about 7 kilometres north of the original MPD claims. A total of 129 holes totaling 22,642.62 metres were drilled on the historical Aspen Grove claims between 1962 and 2016 (Table 10-14 and Figure 10.4).

Table 10-14 Aspen Grove Historic Drillhole Locations

Hole	Zone/Datum	Easting	Northing	Elevation	Azimuth	Dip	Length (m)	Hole Type	Year
A-1	NAD83_Z10	676687	5516510	1373	0	-90	78.03	DDH	1962- 1966
A-2	NAD83_Z10	676469	5516654	1388	245	-60	51.6	DDH	1962- 1966
A-3	NAD83_Z10	676746	5516718	1387	244	-60	88.7	DDH	1962- 1966
A-4	NAD83_Z10	676325	5517272	1355	261	-60	94.5	DDH	1962- 1966
A-5	NAD83_Z10	675889	5516440	1328	226	-60	83.82	DDH	1962- 1966
A-6	NAD83_Z10	676109	5516973	1331	270	-60	53.03	DDH	1962- 1966
AG14-01	NAD83_Z10	670237	5520325	993	90	-60	567	DDH	2014
AG14-02	NAD83_Z10	670212	5520509	995	270	-60	450	DDH	2014
AG14-03	NAD83_Z10	670239	5520748	991	150	-70	566.25	DDH	2014
AG14-04	NAD83_Z10	670377	5521201	990	120	-60	429	DDH	2014
AG15-01	NAD83_Z10	670065	5520479	1037	110	-50	459	DDH	2014
AGR91-01	NAD83_Z10	671781	5520980	1066	0	-90	68.58	RC	1991
AGR91-02	NAD83_Z10	671868	5521020	1057	0	-90	36.59	RC	1991
AGR91-03	NAD83_Z10	672456	5524600	1098	0	-90	60.95	RC	1991
AGR91-04	NAD83_Z10	674006	5520590	1152	0	-90	67.05	RC	1991
AGR91-05	NAD83_Z10	673931	5520570	1145	0	-90	60.95	RC	1991
AGR91-06	NAD83_Z10	673829	5520630	1144	0	-90	70.1	RC	1991
AGR91-07	NAD83_Z10	674590	5521800	1129	0	-90	91.44	RC	1991
AGR91-08	NAD83_Z10	674513	5521800	1128	0	-90	70.1	RC	1991
AGR91-09	NAD83_Z10	674437	5521800	1123	0	-90	70.1	RC	1991
B-01	NAD83_Z10	674354	5517209	1324	0	-90	91.5	PERC	1991- 1992
B-02	NAD83_Z10	674466	5516786	1317	0	-90	91.5	PERC	1991- 1992
B-04	NAD83_Z10	674547	5516968	1298	0	-90	45.7	PERC	1991- 1992
B-05	NAD83_Z10	675115	5516893	1279	0	-90	54.9	PERC	1991- 1992

Hole	Zone/Datum	Easting	Northing	Elevation	Azimuth	Dip	Length (m)	Hole Type	Year
B-06	NAD83_Z10	675196	5517226	1277	0	-90	67.1	PERC	1991- 1992
B-07	NAD83_Z10	675665	5516423	1285	0	-90	39.6	PERC	1991- 1992
B-08	NAD83_Z10	675931	5516714	1316	0	-90	45.7	PERC	1991- 1992
B-09	NAD83_Z10	676127	5516679	1351	0	-90	91.44	PERC	1991- 1992
B-1	NAD83_Z10	670068	5520480	1037	0	-90	32.61	DDH	
B-10	NAD83_Z10	676396	5516733	1385	0	-90	91.44	PERC	1991- 1992
B-11	NAD83_Z10	676287	5516307	1345	0	-90	42.7	PERC	1991- 1992
B-12	NAD83_Z10	676539	5516516	1384	0	-90	91.44	PERC	1991- 1992
B-13	NAD83_Z10	676705	5516711	1389	0	-90	91.44	PERC	1991- 1992
B-14	NAD83_Z10	676736	5516270	1369	0	-90	91.44	PERC	1991- 1992
B-15	NAD83_Z10	675903	5516899	1304	0	-90	91.44	PERC	1991- 1992
B-16	NAD83_Z10	675897	5516489	1322	0	-90	39.6	PERC	1991- 1992
H-21	NAD83_Z10	670168	5520432	1006	304	-45	150	DDH	1962- 1965
H-22	NAD83_Z10	670237	5520482	987	304	-45	234.75	DDH	1962- 1965
H-23	NAD83_Z10	670019	5520329	1029	304	-45	128.35	DDH	1962- 1965
H-24	NAD83_Z10	670247	5520567	983	304	-45	150.91	DDH	1962- 1965
H-25	NAD83_Z10	670274	5520390	976	304	-45	134.45	DDH	1962- 1965
H-26	NAD83_Z10	670315	5520354	961	304	-68	109.79	DDH	1962- 1965
H-27	NAD83_Z10	670352	5520327	963	304	-60	143.59	DDH	1962- 1965
H-28	NAD83_Z10	670309	5520321	963	304	-60	127.44	DDH	1962- 1965
H-29	NAD83_Z10	670318	5520379	961	304	-60	124.69	DDH	1962- 1965
H-30	NAD83_Z10	670352	5520326	963	304	-77.5	189.94	DDH	1962- 1965
H-31	NAD83_Z10	670367	5520504	964	304	-50	125.3	DDH	1962- 1965

Hole	Zone/Datum	Easting	Northing	Elevation	Azimuth	Dip	Length (m)	Hole Type	Year
H-32	NAD83_Z10	670308	5520533	963	304	-60	141.46	DDH	1962- 1965
H-33	NAD83_Z10	670292	5520446	965	304	-65	150	DDH	1962- 1965
H-34	NAD83_Z10	670256	5520152	991	304	-51	62.8	DDH	1962- 1965
H-35	NAD83_Z10	670178	5520204	1010	304	-50	136.58	DDH	1962- 1965
H-36	NAD83_Z10	670324	5520107	961	304	-75	268.79	DDH	1962- 1965
K05-01	NAD83_Z10	676273	5516895	1369	0	-90	54	DDH	2005
K05-02	NAD83_Z10	676273	5516895	1369	225	-45	54	DDH	2005
K05-03	NAD83_Z10	676273	5516895	1369	45	-45	104.2	DDH	2005
K05-04	NAD83_Z10	676412	5516719	1386	0	-90	109.8	DDH	2005
K05-05	NAD83_Z10	676412	5516719	1386	80	-45	76.2	DDH	2005
K05-06	NAD83_Z10	676901	5516046	1360	0	-90	81.4	DDH	2005
K05-07	NAD83_Z10	676412	5516719	1386	260	-60	127.4	DDH	2005
K05-08	NAD83_Z10	676378	5516640	1374	0	-90	236.3	DDH	2005
K05-09	NAD83_Z10	676378	5516640	1374	80	-60	171.4	DDH	2005
K05-10	NAD83_Z10	676273	5516886	1369	240	-45	195.7	DDH	2005
K06-11	NAD83_Z10	676491	5516506	1378	47	-60	339.85	DDH	2006
K06-12	NAD83_Z10	676289	5516578	1363	47	-60	145.1	DDH	2006
K07-13	NAD83_Z10	676553	5516856	1404	227	-60	314.9	DDH	2007
K07-14	NAD83_Z10	676559	5516285	1363	47	-60	172.8	DDH	2007
K07-15	NAD83_Z10	675806	5516668	1295	52	-60	68	DDH	2007
K07-16	NAD83_Z10	676107	5516649	1348	47	-60	181.7	DDH	2007
K07-17	NAD83_Z10	676008	5517294	1308	0	-90	193.55	DDH	2007
K15-01	NAD83_Z10	676011	5516924	1322	30	-60	390	DDH	2015
K15-02	NAD83_Z10	676262	5516903	1369	225	-55	51	DDH	2015
K15-02a	NAD83_Z10	676262	5516903	1369	225	-55	42.5	DDH	2015
K15-02b	NAD83_Z10	676262	5516903	1369	225	-55	485	DDH	2015
K15-03	NAD83_Z10	676260	5516576	1362	45	-60	678	DDH	2015
K15-04	NAD83_Z10	676578	5516626	1390	230	-60	396.25	DDH	2015
K15-05	NAD83_Z10	676576	5516626	1390	15	-60	529.92	DDH	2015
K15-06	NAD83_Z10	676705	5516699	1388	145	-60	501.7	DDH	2015
K15-07	NAD83_Z10	676960	5516683	1406	200	-60	498	DDH	2015
K15-08	NAD83_Z10	677112	5516424	1408	230	-60	381	DDH	2015
K15-09	NAD83_Z10	677109	5516416	1408	20	-60	190.5	DDH	2015
K15-10	NAD83_Z10	675959	5517513	1303	20	-55	126	DDH	2015
K15-10a	NAD83_Z10	675958	5517513	1303	20	-60	116.45	DDH	2015

Hole	Zone/Datum	Easting	Northing	Elevation	Azimuth	Dip	Length (m)	Hole Type	Year
K15-10b	NAD83_Z10	675956	5517512	1302	0	-60	358	DDH	2015
K15-11	NAD83_Z10	675958	5517498	1302	200	-60	372	DDH	2015
K15-12	NAD83_Z10	676009	5517295	1309	20	-60	451.5	DDH	2015
K15-13	NAD83_Z10	676004	5516925	1322	0	-75	456	DDH	2015
K16-01	NAD83_Z10	676151	5517180	1334	90	-60	459.33	DDH	2016
K16-02	NAD83_Z10	676430	5517073	1403	250	-60	380.09	DDH	2016
K16-03	NAD83_Z10	676201	5517409	1345	300	-60	511.15	DDH	2016
K16-04	NAD83_Z10	676093	5517593	1318	260	-60	459.33	DDH	2016
K16-05	NAD83_Z10	676704	5516701	1388	305	-60	57	DDH	2016
K16-05A	NAD83_Z10	676708	5516695	1388	295	-65	715.37	DDH	2016
K16-06	NAD83_Z10	676257	5516893	1370	310	-60	544.68	DDH	2016
K16-07	NAD83_Z10	676344	5516775	1376	310	-60	386.18	DDH	2016
K16-08	NAD83_Z10	676267	5516909	1369	310	-50	495.91	DDH	2016
L75-1	NAD83_Z10	676023	5517032	1321	0	-90	107.9	DDH	1975
L75-2A	NAD83_Z10	675617	5517606	1276	0	-90	107.29	DDH	1975
L75-3	NAD83_Z10	676078	5517045	1326	0	-90	119.18	DDH	1975
L75-4	NAD83_Z10	676061	5516968	1325	0	-90	218.24	DDH	1975
L79-5	NAD83_Z10	674463	5517197	1314	0	-90	203.29	DDH	1979
L79-6	NAD83_Z10	674917	5515713	1286	0	-90	206.34	DDH	1979
M92-1	NAD83_Z10	676282	5516838	1371	0	-90	91.44	PERC	1992
M92-2	NAD83_Z10	676262	5516666	1365	0	-90	91.44	PERC	1992
M92-3	NAD83_Z10	676341	5516522	1364	0	-90	91.44	PERC	1992
M92-4	NAD83_Z10	676438	5516577	1377	0	-90	91.44	PERC	1992
M92-5	NAD83_Z10	676011	5516863	1325	0	-90	45.7	PERC	1992
M92-6	NAD83_Z10	676152	5516767	1352	0	-90	91.44	PERC	1992
M92-7	NAD83_Z10	676167	5516949	1343	0	-90	39.6	PERC	1992
M92-8	NAD83_Z10	676629	5516425	1376	0	-90	97.5	PERC	1992
P-1	NAD83_Z10	676050	5517369	1308	315	-45	59.74	DDH	1962- 1966
P-1A	NAD83_Z10	676050	5517369	1308	315	-60	24.69	DDH	1962- 1966
P-2	NAD83_Z10	676029	5517403	1308	135	-45	60.35	DDH	1962- 1966
P-3	NAD83_Z10	676151	5517468	1331	257	-45	62.79	DDH	1962- 1966
PC74-1	NAD83_Z10	675426	5517869	1275	0	-90	106.7	PERC	1974
PC74-2	NAD83_Z10	675437	5517203	1274	0	-90	109.8	PERC	1974
PC74-3	NAD83_Z10	675643	5516638	1271	0	-90	30.5	PERC	1974
PC74-3A	NAD83_Z10	675778	5516690	1289	0	-90	91.5	PERC	1974
PC74-4	NAD83_Z10	674667	5515615	1312	0	-90	27.5	PERC	1974

Hole	Zone/Datum	Easting	Northing	Elevation	Azimuth	Dip	Length (m)	Hole Type	Year
PC74-5	NAD83_Z10	675227	5518662	1265	0	-90	106.7	PERC	1974
PC74-6	NAD83_Z10	675675	5517231	1279	0	-90	106.7	PERC	1974
PC74-7	NAD83_Z10	675976	5517242	1306	0	-90	122	PERC	1974
PC74-8	NAD83_Z10	675752	5517541	1287	0	-90	77.8	PERC	1974
PC74-9	NAD83_Z10	676093	5517593	1318	0	-90	122	PERC	1974
TPH79-01	NAD83_Z10	674995	5523281	1045	0	-90	18.29	RC	1979
TPH79-02	NAD83_Z10	675084	5523295	1037	0	-90	27.4	RC	1979
TPH79-03	NAD83_Z10	675110	5523092	1037	0	-90	21.3	RC	1979
TPH79-04	NAD83_Z10	674662	5524149	1052	0	-90	91.44	RC	1979
TPH79-05	NAD83_Z10	674979	5523310	1047	0	-90	91.44	RC	1979
TPH79-06	NAD83_Z10	674987	5523092	1054	0	-90	27.4	RC	1979
129							22642.6		

1962-1965 Tormont Mines Ltd. (Tormont)

Between 1962-1965, Tormont completed 2,759 m of diamond drilling in 18 holes to test a skarn Cu showing, now known as the Par showing, west of Otter Creek (Coutts et al., 1962, 1965). The longest continuously assayed interval recorded an intersection of 0.86% Cu and 44 g/t Ag over 20.42 m (110.03 m - 130.45 m) in drill hole H-27 (Peterson and Luckman, 2017). Drill hole H-29, collared about 65 m northwest of H-27, included three continuously assayed intervals within a 56 m intersection: 0.73% Cu and 31 g/t Ag over 10.67 m (23.16-33.83 metres), 0.41% Cu and 26 g/t Ag over 15.24 m (38.1 m - 53.34 m) and 0.32% Cu and 9 g/t Ag over 9.15 m (70.1 m - 79.25 m). Three gold assays of 0.03 ounces per ton (1 g/t) over 1.52 m each were recorded in this hole.

1962-1966 Adera Mining Limited (Adera) and Plateau Metals Ltd. (Plateau)

Between 1962 and 1966, Plateau completed four diamond drill holes totalling 207.5 m, and Adera completed six diamond drill holes totalling 449.5 m to test I.P. anomalies in the Ketchan Zone. The longest reported mineralized intercept from this program is from drill hole P-3: 0.22% Cu over 39.6 m (3.0 m - 42.7 m) (Lammle, 1967). A combination of AX and AXWL size drill core was recovered.

1974-1980 Bethlehem Copper Corporation (Bethlehem)

In 1974, Bethlehem completed 10 percussion holes totalling 900 m to test the western part of the Ketchan prospect. In 1975, Bethlehem completed 4 NQ size drill holes totalling 351 m (Anderson, 1975, 1976). No assay results for either drilling program are available. In 1980, Bethlehem completed a final drill program consisting of 2 diamond drill holes totalling 410 m to test the results of an IP survey carried out earlier in the year (Anderson, 1979). NQ size core was recovered. Results were insignificant.

1991-1992 Cominco Ltd. (Cominco)

Between 1991-1992, Cominco completed 23 percussion holes, totalling 1,707 m. The goal was to drill previously untested IP and soil geochemical anomalies. Holes intersected altered alkaline rocks with elevated copper and gold contents in the Ketchan zone. Significant intercepts from the 1991-1992 drilling campaign are illustrated in Table 10-15 (Aulis, 1991b and 1992).

Figure 10.4 Historical Drilling - Aspen Grove, Ketchan

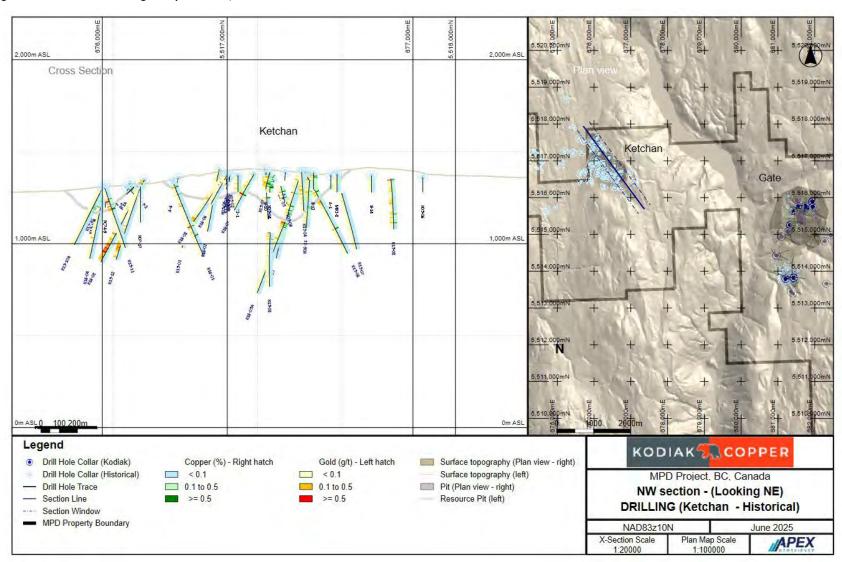


Table 10-15 1991-1992 Cominco Drilling Significant Intercepts

Hole	From (m)	To (m)	Interval (m)	Cu (%)	Au (g/t)	Prospect
B-10	4.9	91.5	86.6	0.38	0.07	Ketchan
B-12	11	91.5	80.5	0.24	0.08	Ketchan
B-13	0.9	91.5	90.6	0.13	0.1	Ketchan
including	33.5	70.1	36.6	0.21	0.21	Ketchan
M92-4	10.1	91.5	81.4	0.26	0.12	Ketchan

Source: Aulis (1991b; 1992)

Intervals are sample length. True width is unknown.

1991 Rayrock Yellowknife Resources Inc. (Rayrock)

In 1991, Rayrock completed 9 RC drill holes totalling 651 m in the Zig zone and targeted various geophysical anomalies. The drilling confirmed the presence of widespread disseminated pyrite but did not return any copper or gold results of economic significance (Gourlay, 1991).

2005-2007 Copper Belt Resources (Copper Belt) and Midland Resources (Midland)

In 2005, Copper Belt drilled 10 diamond drill holes totalling 1,210 m. This drilling program was completed to confirm and evaluate percussion drilling carried out by Cominco in 1991 and 1992 in the Ketchan zone. The 2005 diamond-drilling program was successful in providing more reliable geological and assay results than the previous percussion drill programs. As a follow-up to the encouraging results, subsequent diamond drill programs were carried out in 2006 and 2007. In 2006, Copper Belt drilled two diamond drill holes totalling 485 m, and in 2007, five diamond drill holes totalling 931 m. A combination of HQ and NQ size drill core was recovered. In 2005-2007, drilling notably increased the copper and gold mineralization in the Ketchan zone. Significant intercepts from the 2005-2007 drilling campaign are illustrated in Table 10-16 (Thomson, 2006 and 2007).

Table 10-16 2005-2007 Copper Belt and Midland Drilling Significant Intercepts

Hole	From (m)	To (m)	Interval (m)	Cu (%)	Au (g/t)	Prospect
K05-04	9.2	109.8	100.7	0.38	0.1	Ketchan
including	22	52.5	30.5	0.58	0.14	Ketchan
including	64.7	98.2	33.6	0.51	0.11	Ketchan
K05-08	9.8	98.2	88.5	0.34	0.09	Ketchan
including	15.9	70.8	54.9	0.42	0.12	Ketchan
K06-11	107.65	145.3	37.65	0.24	0.12	Ketchan
K07-14	88	114	26	0.2	0.19	Ketchan

Source: Thomson (2006; 2007)

Intervals are core length. True width is unknown.

2014-2016 Kaizen Discovery Inc. (Kaizen)

In 2014, Kaizen Discovery completed a 4 hole drill program totalling 2,012 m on two main zones of anomalous chargeability in the Par area. Drilling intersected broad intervals of strong quartz-sericite-pyrite to advanced argillic alteration in a mainly felsic volcanic-intrusive sequence which has limited outcrop

expression. Multiple intervals of strong sulphide mineralization were encountered, but levels of copper and gold were subeconomic. In 2015, one diamond drill hole was completed to test a strong chargeability anomaly, completed to 459 m in the Par area. It intersected 73.2 m (1.8 m - 75 m) of 0.24% Cu and 0.10 g/t Au, associated with magnetite + pyrite +/- specular hematite cemented hydrothermal breccia and microbreccia. HQ drill core size was used.

In early 2015, mapping in the Ketchan area documented widespread chalcopyrite mineralization primarily associated with magnetite in potassic/calc-potassic altered diorite. Thirteen diamond drill holes totalling 6,024 m were completed, targeting various mineralized areas of Ketchan zone. As a follow-up in 2016, Kaizen drilled additional 9 holes in the Ketchan area totalling 4,009 m. A combination of HQ and NQ size drill core was recovered. Kaizen's exploration program successfully expanded the known copper and gold mineralization, as well as deepened the geological understanding of the Ketchan porphyry system. Significant intercepts from the 2015-2016 drilling campaign are illustrated in Table 10-17 (Peterson et al., 2016; Peterson and Luckman, 2017).

Table 10-17 2015-2016 Kaizen Drilling Significant Intercepts

Hole	From (m)	To (m)	Interval (m)	Cu (%)	Au (g/t)	Prospect
K15-01	192	270	78	0.5	0.15	Ketchan
K15-02b	57	129	72	0.34	0.06	Ketchan
K15-03	269	341	72	0.31	0.2	Ketchan
K15-04	260	312	52	0.32	0.18	Ketchan
K15-05	189	319	130	0.22	0.06	Ketchan
K15-10	100	126	26	1.05	0.05	Ketchan
K15-11	70	138	68	0.4	0.34	Ketchan
K15-13	5.5	140	134.5	0.23	0.1	Ketchan
K16-01	23	37	14	0.44	0.18	Ketchan
K16-06	347	409	62	0.46	0.1	Ketchan
K16-07	111	131	20	0.61	0.39	Ketchan
K16-07	278	338	60	0.36	0.15	Ketchan

Source: Peterson et al. (2016); Peterson and Luckman (2017)

Intervals are core length. True width is unknown.

10.2 2019-2024 Kodiak Drilling Summary

Kodiak has completed 150 diamond drill holes totaling 84,198 m on the MPD Project since 2019. The total drill hole count includes completed, failed and abandoned or abandoned and redrilled holes (Table 10-18). Except for 2 abandoned and redrilled drill holes (labeled "A" in Table 10-18, Figures 10.5 and 10.6), a total of 43,570 m in 66 holes have been drilled at the Gate Zone, 5 holes totaling 1,906 m at the Adit Zone, 9,190 m in 15 holes at the Dillard Zone and 8 holes totaling 5,931 m at the Man Zone. Kodiak drilling at the South Zone totals 4,574 m in 7 holes, 11 holes totaling 5,989 m at the West Zone and the remaining 36 holes totaling 13,039 m tested exploration targets. Table 10-18 provides the orientation of drillholes within the Project. Vertical sections illustrate subsurface drilling configuration in relation to intersects (Figures 10.7 -10.9).

Table 10-18 2019-2024 Kodiak drilling at the Property

Drill Hole ID	Northing*	Easting*	Elevation (m)	Azimuth	Length (m)	Dip	Hole Status	Assay
MPD-19-001	5513785	681210	1280	88	303	-66	Completed	Yes
MPD-19-002	5515746	681955	1285	0	646.69	-90	Completed	Yes
MPD-19-003	5515753	681555	1240	180	816	-80	Completed	Yes
MPD-19-003A	5515750	681555	1240	180	21	-80	Completed	No
MPD-20-001	5515700	681747	1260	270	778.76	-60	Completed	Yes
MPD-20-002	5515700	681747	1260	270	836	-66	Completed	Yes
MPD-20-003	5515700	681747	1260	270	731	-50	Completed	Yes
MPD-20-004	5515625	681703	1265	270	785	-65	Completed	Yes
MPD-20-005	5515625	681703	1265	270	739.25	-71	Completed	Yes
MPD-20-006	5515625	681703	1265	270	726	-55	Completed	Yes
MPD-20-007	5515625	681703	1265	270	720	-80	Completed	Yes
MPD-20-008	5515625	681703	1265	270	145	-45	Failed	Yes
MPD-20-009	5515625	681703	1265	85	543	-80	Failed	Yes
MPD-20-010	5515633	681410	1238	270	839	-90	Completed	Yes
MPD-21-001	5515770	681752	1258	270	766	-67	Completed	Yes
MPD-21-002	5515770	681752	1258	270	750	-50	Completed	Yes
MPD-21-003	5515650	681415	1242	165	648	-60	Completed	Yes
MPD-21-004	5515650	681415	1242	115	641	-67	Completed	Yes
MPD-21-005	5515650	681415	1242	135	86	-75	Failed	No
MPD-21-006	5515650	681415	1242	130	821	-76	Completed	Yes
MPD-21-007	5515650	681415	1242	270	545	-60	Completed	Yes
MPD-21-008	5515075	681280	1204	90	686	-60	Completed	Yes
MPD-21-009	5515075	681280	1204	90	713	-88.5	Completed	Yes
MPD-21-010	5515075	681280	1204	270	671	-80	Completed	Yes
MPD-21-011	5515075	681280	1204	270	515	-60	Completed	Yes
MPD-21-012	5515080	681280	1204	150	713	-80	Completed	Yes
MPD-21-013	5515080	681280	1204	150	623	-70	Completed	Yes
MPD-21-014	5515080	681280	1204	150	54	-55	Failed	No
MPD-21-015	5515080	681280	1204	150	695	-50	Completed	Yes
MPD-21-016	5515247	681341	1198	90	799.52	-78	Completed	Yes
MPD-21-017	5515247	681341	1198	90	587	-88	Completed	Yes
MPD-21-018	5515247	681341	1198	90	827	-70	Completed	Yes
MPD-21-019	5515247	681341	1198	90	463.24	-60	Completed	Yes
MPD-21-020	5515247	681341	1198	270	507	-70	Completed	Yes
MPD-21-021	5515545	681608	1245	270	97	-75	Failed	No
MPD-21-022	5515545	681608	1245	270	215	-78	Failed	No
MPD-21-023	5515545	681608	1245	270	222.44	-85	Failed	Yes
MPD-21-024	5515498	681646	1265	270	767	-73	Completed	Yes
MPD-21-025	5515498	681646	1265	270	278	-63	Completed	Yes

Drill Hole ID	Northing*	Easting*	Elevation (m)	Azimuth	Length (m)	Dip	Hole Status	Assay
MPD-21-026	5515498	681646	1265	270	812	-81	Completed	Yes
MPD-21-027	5515399	681644	1279	270	715	-80	Completed	Yes
MPD-21-028	5515399	681644	1279	270	663	-68	Completed	Yes
MPD-21-029	5515399	681644	1279	350	800	-69	Completed	Yes
MPD-21-030	5514934	6811054	11764	90	865	-67	Completed	Yes
MPD-21-031	5515308	681647	1279	270	633	-57	Completed	Yes
MPD-21-032	5515308	681647	1279	270	687	-67	Completed	Yes
MPD-21-033	5515308	681647	1279	270	809	-77	Completed	Yes
MPD-21-034	5513970	683347	1450	0	827	-66	Completed	Yes
MPD-21-035	5513970	683347	1450	0	692	-88	Completed	Yes
MPD-21-036	5514934	681105.3	1176.4	70	481	-77	Completed	Yes
MPD-22-001	5514934	681105.3	1176.4	210	467.6	-60	Completed	Yes
MPD-22-002	5514934	681105.3	1176.4	65	628	-67	Completed	Yes
MPD-22-003	5514934	681105.3	1176.4	120	836	-67	Completed	Yes
MPD-22-004	5515080	681278	1203	90	830	-75	Completed	Yes
MPD-22-005	5515080	681278	1203	70	921.15	-70	Completed	Yes
MPD-22-006	5515246	681344	1197	157	803	-75	Completed	Yes
MPD-22-007	5515247	681341	1198	90	674	-47	Completed	Yes
MPD-22-008	5515247	681341	1198	134	944	-75.5	Completed	Yes
MPD-22-009	5515308	681647	1279	270	605	-86	Failed	Yes
MPD-22-010	5515308	681647	1279	75	626	-60	Completed	No
MPD-22-011	5515445	682055	1335	90	645	-70	Completed	Partial
MPD-22-012	5515445	682055	1335	90	447	-45	Completed	No
MPD-22-013	5515445	682055	1335	310	849	-60	Completed	Yes
MPD-22-014	5515445	682055	1335	310	882	-47	Completed	Yes
MPD-22-015	5515445	682055	1335	270	922	-57	Completed	Yes
MPD-22-015A	5515445	682055	1335	270	48.5	-57	Failed	No
MPD-22-016	5515445	682055	1335	150	762	-57	Completed	No
MPD-22-017	5515615	682030	1318	248	860	-58	Completed	Yes
MPD-22-018	5515615	682030	1318	270	975	-54	Completed	Yes
MPD-22-019	5515615	682030	1318	325	623	-67.5	Failed	Yes
MPD-22-020	5515615	682030	1318	270	794	-80	Completed	Yes
MPD-22-021	5514807	682273	1392	270	110.88	-55	Failed	No
MPD-22-022	5514807	682273	1392	270	101.82	-55	Failed	No
MPD-22-023	5514807	682273	1392	270	226.41	-70	Failed	No
MPD-22-024	5514973	682444	1395	270	314.28	-55	Failed	No
MPD-22-025	5514973	682444	1395	270	716	-50	Completed	Yes
MPD-22-026	5514550	683250	1486	270	740	-50	Completed	Yes
MPD-22-027	5514550	683250	1482	0	713	-50	Completed	Yes
MPD-22-028	5514550	683250	1482	90	235	-63	Failed	No
MPD-22-029	5514550	683250	1482	85	630	-63	Completed	Yes

Drill Hole ID	Northing*	Easting*	Elevation (m)	Azimuth	Length (m)	Dip	Hole Status	Assay
MPD-22-030	5514550	683250	1482	85	575	-89	Completed	Yes
MPD-22-031	5515885	681947	1278	0	557	-90	Completed	Yes
MPD-22-032	5515885	681947	1278	0	473	-70	Completed	Yes
MPD-22-033	5515925	681514	1270	260	839	-60	Completed	Yes
MPD-22-034	5514500	683350	1486	80	498.2	-58	Completed	Yes
MPD-22-035	5514500	683350	1486	50	269	-50	Failed	Yes
MPD-22-036	5514500	683350	1488	160	833	-57	Completed	Yes
MPD-22-037	5514550	683250	1482	220	746	-50	Completed	Yes
MPD-22-038	5514050	683450	1450	165	611	-70	Completed	Yes
MPD-22-039	5514050	683450	1450	95	405	-50	Failed	Yes
MPD-22-040	5514050	682900	1425	0	722	-50	Completed	Yes
MPD-22-041	5513655	682325	1455	90	694	-50	Completed	No
MPD-23-001	5513816	681435	1360	0	995	-90	Completed	Yes
MPD-23-002	5513816	681435	1360	90	924	-70	Completed	Yes
MPD-23-003	5513816	681435	1360	90	1094	-80	Completed	Yes
MPD-23-004	5513814	681434	1360	272	104	-60	Failed	No
MPD-23-005	5513814	681434	1360	272	825	-65	Completed	Partial
MPD-23-006	5513816	681435	1360	272	879	-80	Completed	Yes
MPD-23-007	5513816	681435	1360	342.6	807	-50	Completed	Yes
MPD-23-008	5513440	681360	1364	90	54	-45	Failed	Yes
MPD-23-009	5513440	681360	1364	90	487	-60	Completed	Partial
MPD-23-010	5513389	681416	1387	343	295	-65	Completed	Yes
MPD-23-011	5513389	681416	1387	333	80	-68	Completed	No
MPD-23-012	5513389	681416	1387	333	144	-50	Completed	Partial
AXE-23-001	5503122	677406	1413.6	180	732	-65	Completed	Yes
AXE-23-002	5503122	677406	1413.6	0	819.01	-90	Completed	Yes
AXE-23-003	5503122	677406	1413.6	90	367	-45	Completed	Yes
AXE-23-004	5503122	677406	1413.6	90	707	-75	Completed	Yes
AXE-23-005	5503122	677406	1413.6	25	87.35	-50	Failed	Yes
AXE-23-006	5503125	677405	1413.6	15	97.35	-45	Failed	Yes
AXE-23-007	5503125	677405	1413.6	15	459	-50	Completed	Yes
AXE-23-008	5502823	677399	1391.5	350	897	-75	Completed	Yes
AXE-23-009	5502820	677393	1390.4	90	83	-85	Failed	Yes
AXE-23-010	5502820	677393	1390.4	90	709.1	-80	Failed	Yes
AXE-23-011	5502934	677383	1401.3	0	1031	-90	Completed	Yes
AXE-23-012	5501652	678513	1330.1	100	849	-68	Completed	Yes
AXE-23-013	5501650	678513	1330.1	305	944	-80	Completed	Yes
AXE-23-014	5501652	678513	1330.1	345	1061.82	-57	Completed	Yes
AXE-23-015	5501663	680139	997.5	0	253	-90	Failed	Yes
AXE-23-016	5501663	680139	997.5	90	782	-80	Completed	Yes
AXE-23-017	5501663	680139	997.5	90	600	-50	Completed	Yes

Drill Hole ID	Northing*	Easting*	Elevation (m)	Azimuth	Length (m)	Dip	Hole Status	Assay
AXE-23-018	5501663	680139	997.5	20.17	938	-50.48	Completed	Yes
AXE-23-019	5501677	680139	995	145.35	146	-50	Failed	Yes
AXE-23-020	5501677	680139	995	145	129	-60	Failed	Yes
AXE-23-021	5501891	680344	1150	290	183.2	-75	Failed	Yes
MPD-24-001	5514424	680967	1142.6	100.32	551	-49.92	Completed	Yes
MPD-24-002	5514424	680967	1142.6	59.9	611	-50.04	Completed	Yes
MPD-24-003	5514424	680967	1142.6	309.78	202	-50	Completed	Yes
MPD-24-004	5514422	680966	1142.4	309.78	504	-60	Completed	Yes
MPD-24-005	5511298	684200	1597	140.18	29.3	-65.02	Failed	No
MPD-24-006	5511297	684204	1605.6	140.12	641	-65.11	Completed	Yes
MPD-24-007	5511521	684286	1616.8	90	79	-50	Completed	Yes
MPD-24-008	5511523	684282	1616.8	90	356.69	-60	Completed	Yes
MPD-24-009	5510881	684252	1601	23.02	488	-50.03	Completed	Yes
MPD-24-010	5510570	684327	1571.1	145.06	401	-49.98	Completed	Yes
AXE-24-001	5502076	680129	1139.7	190.03	99	-50	Failed	No
AXE-24-002	5502076	680129	1139.7	190.03	198	-60	Failed	Yes
AXE-24-003	5501419	680149	954.2	110	459	-50.2	Completed	Yes
AXE-24-004	5501663	680139	997.5	320.01	147	-50.4	Failed	No
AXE-24-005	5504214	677363	1445.1	89.98	477	-50.08	Failed	Yes
AXE-24-006	5504164	677954	1378.8	210.14	381	-54.01	Completed	No
AXE-24-007	5502789	678347	1250.9	74.66	530	-50.07	Completed	Yes
AXE-24-008	5501281	678487	1322.6	70.38	531	-49.92	Completed	Yes
AXE-24-009	5502789	678347	1250.9	130.32	434	-60.84	Completed	Yes
AXE-24-010	5501452	678553	1320.2	319.76	500	-50.05	Completed	Yes
AXE-24-011	5502789	678347	1250.9	30	541	-50.03	Completed	Yes
AXE-24-012	5502271	678243	1317.4	65.44	383	-50.4	Completed	Yes
AXE-24-013	5503186	678402	1246.6	75	246	-50.02	Failed	Yes
AXE-24-014	5502273	678243	1317.1	330.11	305	-49.97	Completed	Yes
AXE-24-015	5503186	678402	1246.6	219.97	155	-50	Failed	Yes
Total DDI *NAD83 UTM zo			Total dril	ling (m)	84267.56			

Full Force Drilling Ltd. of Peachland, BC completed the 2019 diamond drilling. Atlas Drilling Ltd. of Kamloops, BC were contracted for the 2020 to 2024 drill programs. The diamond core was NQ sized, and three-metre drill rods were used to recover core. On the drill site, the drill set-up was surveyed by handheld GPS for collar coordinates, a compass for hole orientation and an inclinometer to confirm the inclination of the hole. In 2023 and 2024 programs, a DeviAligner was used to line-up the rigs. Downhole survey data, including azimuth and dip measurements and standard deviations, were recorded at intervals of 100 m downhole and at the bottom of the hole using a Reflex survey tool. In 2023 and 2024 programs, continuous surveying was done using a DeviGyro.

Figure 10.5 2019 - 2024 Kodiak Drilling - MPD Claims

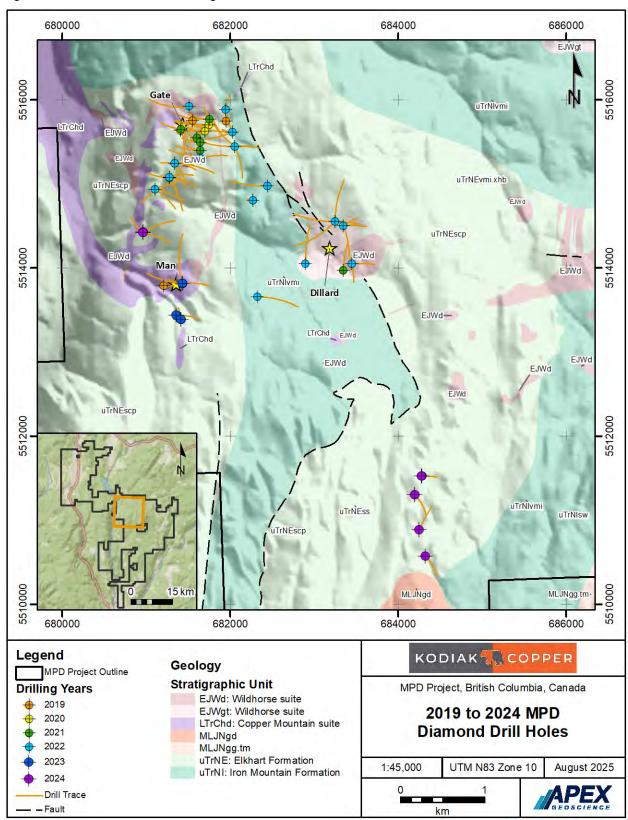


Figure 10.6 2023 - 2024 Kodiak Drilling - Axe Claims

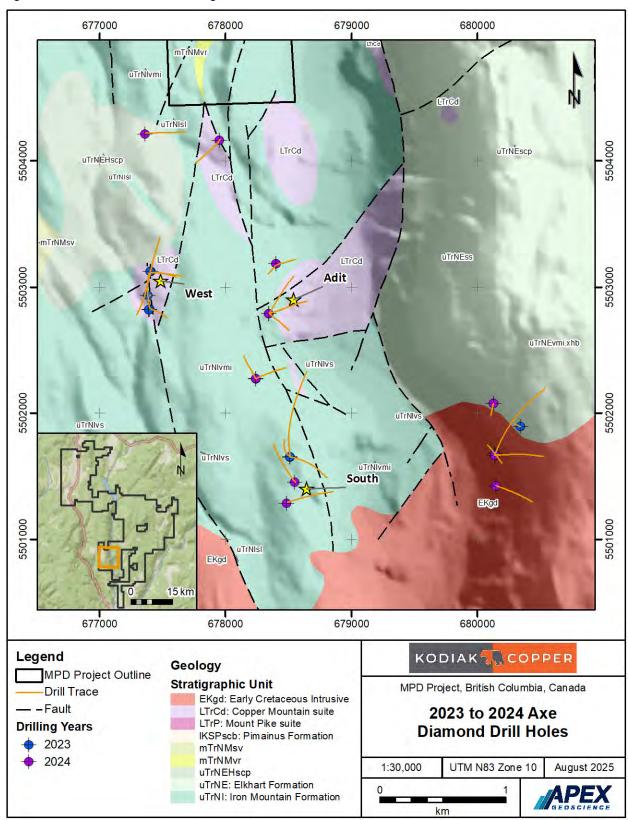


Figure 10.7 North-northeast Vertical Cross section looking West - 2019-2023 Gate and Man drilling

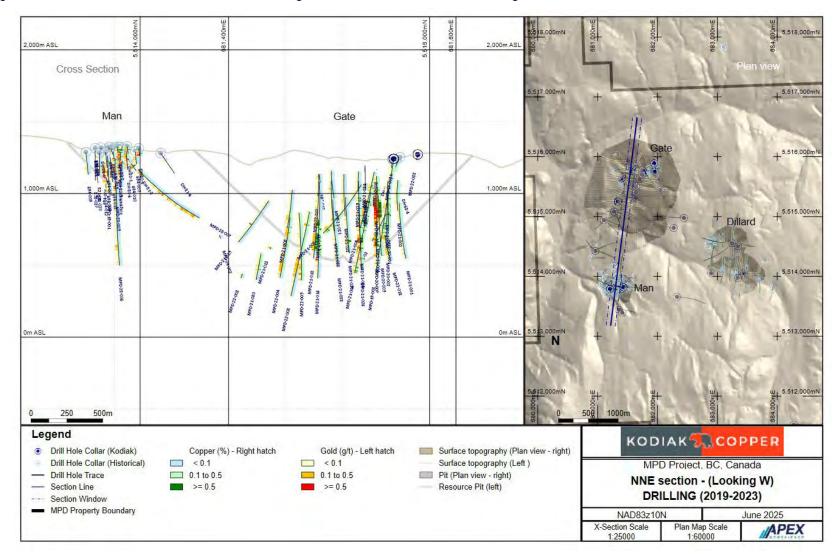


Figure 10.8 Northwest Vertical Cross Section Looking Northeast - 2019-2023 Gate and Dillard drilling

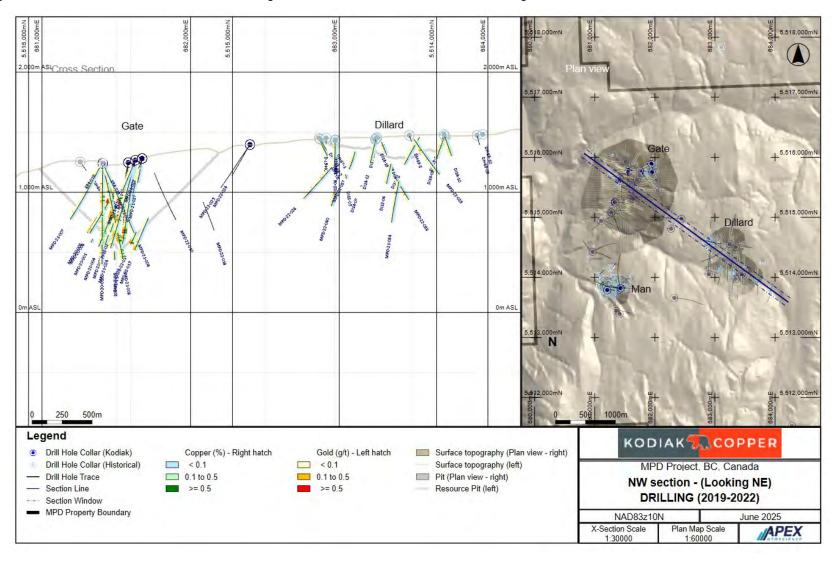
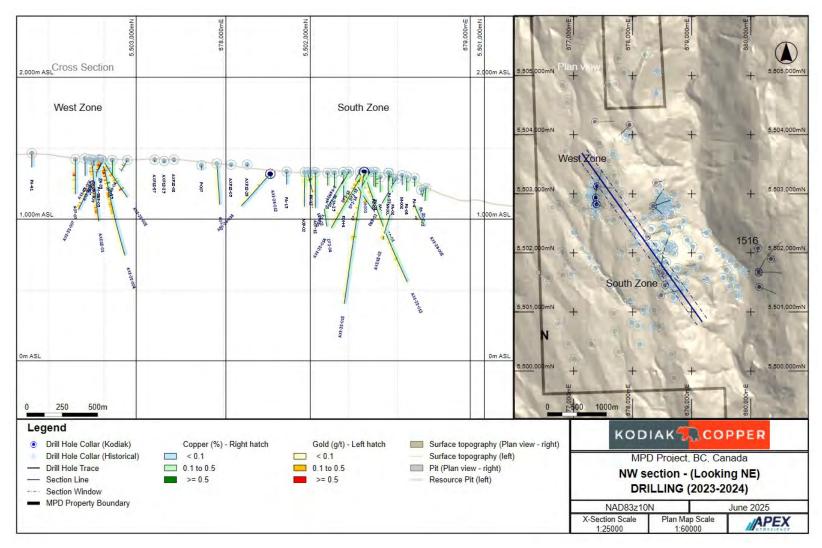



Figure 10.9 Northwest Vertical Cross Section Looking Northeast - 2023-2024 Axe drilling

Drill core was transported by the Atlas drill crew or Kodiak personnel to the core facility in Merritt, BC, for logging and sampling. The core was logged by a geologist and lithology, structure, alteration and mineralization were recorded. Geologists marked the intervals of drill core that should be sampled. Identified sample intervals were cut in half lengthwise using a diamond saw. One half of the core was placed in a sample bag and the other half of the drill core was returned to the core box. A unique sample assay tag was placed in each core sample bag and the bag was securely sealed. Sample intervals were a maximum of 3 metres.

Quality control standard and blank samples were inserted into the sample sequence at an average rate of 1 standard, 1 blank or 1 duplicate sample per 10 drill core samples, representing approximately 10 percent of total samples.

Samples were transported via courier to the ALS Geochemistry Sample Prep Lab in North Vancouver, BC for preparation and subsequently to the ALS Geochemistry laboratory in the neighboring building for analysis. Samples were analyzed for gold using fire assay with an AAS finish, followed by a multi-element four acid digest ICP-AES (ME-ICP61, 2019-2022) and ICP-MS (ME-MS61, 2022 - 2024) analysis. When samples return assays above their upper limit, generally Cu above 10,000 ppm, an additional analysis is required (ME-OG62). ALS Geochemistry is accredited to ISO 17025:2017. ALS is independent of Kodiak, and the Authors of this Technical Report.

Section 11.2 includes a detailed discussion of sample preparation and analytical procedures used in Kodiak drilling programs at the MPD Property.

10.2.1 2019 Diamond Drilling

A total of 1,766 m of NQ sized core was completed in three holes between October 30 and November 22, 2019. Drilling was completed at Prime to test copper-gold mineralization encountered below approximately 300 m depth in two historical holes from 2013. One hole was drilled at Man to evaluate property-scale zonation of the larger porphyry in the area.

All three holes intersected copper mineralization. Two out of the three holes intersected copper mineralization presented in Table 10-19. Both holes intersected copper, with lesser gold and silver. Mineralization occurs in altered porphyritic andesite, diorite and/or monzonite, containing pyrite and chalcopyrite (with associated bornite below 500 m). Bornite and potassic felspar alteration are generally stronger at depth, typical of porphyry systems.

Table 10-19 2019 significant assay results intercepts Property

Hole ID	From (m)	To (m)	Interval (m)*	% Cu	Au g/t	Ag g/t	Target
MPD-19-001	153.83	303	149.17	0.04	0.07	0.31	Man Area
Includes	153.83	225	71.17	0.07	0.08	0.38	Man Area
MPD-19-002	246	549	303	0.13	0.09	0.81	Prime Area
Includes	246	330	84	0.11	0.19	1.09	Prime Area
and	378	531	153	0.17	0.06	0.67	Prime Area
MPD-19-003	52.35	816	763.65	0.21	0.07	0.77	Gate Zone
Includes	297	371.91	74.91	0.43	0.11	1.55	Gate Zone
and	404.93	507	102.07	0.53	0.16	1.71	Gate Zone

Source: APEX (2025) *Interval widths represent drilled core length. True width is unknown.

Drill hole MPD-19-003 intersected a new zone of copper-gold mineralization at the Gate Zone which underlies a broad 600 m by 1,100 m historical copper-in-soil anomaly with over one kilometre of strike length.

MPD-19-003 at the Gate Zone includes intervals of higher-grade copper-gold within a broad lower grade interval of 763.6 m of 0.21% copper and 0.07 g/t gold from 52.3 m to 816.0 m including:

- 74.9 m of 0.43% copper and 0.11 g/t gold from 297.0 m to 371.9 m
- 102.0 m of 0.53% copper and 0.16 g/t gold from 404.9 m to 507.0 m

10.2.2 2020 Diamond Drilling

A total of 6,842 m of NQ core were drilled in ten holes between July 14 and November 7, 2020. The 2020 campaign focused on determining the extent of copper-gold mineralization at the Gate Zone using ten holes from three set-ups. Drill holes MPD-20-001, 002, 003 were drilled westerly from the first drill set-up located 190 m east of the original 2019 drill hole MPD-19-003. Drill holes MPD-20-004 to 009 were inclined from a second pad 75 m south of the first (MPD-20-008 was lost in overburden and MPD-20-009 was lost before reaching the target depth). Hole MPD-20-010 was drilled vertically from a third pad located 290 m west of the second set up. Significant intercepts of the 2020 drilling are presented in Table 10-20 and described below.

Table 10-20 2020 significant assay results intercepts Property

Hole ID	From (m)	To (m)	Interval* (m)	% Cu	Au g/t	Ag g/t
MPD-20-001	152	778.8	626.8	0.19	0.06	0.76
Includes	404.7	483.1	78.5	0.39	0.12	1.71
MPD-20-002	173	815	642	0.21	0.06	0.84
Includes	416.2	449	32.8	0.46	0.12	1.5
and includes	627.2	686	58.8	0.43	0.08	1.16
MPD-20-003	158	663.1	505.1	0.15	0.04	0.69
Includes	308	347	39	0.29	0.06	0.67
and includes	399.5	608	208.5	0.17	0.04	0.95
MPD-20-004	201.9	737	535.1	0.49	0.29	1.76
Includes	380	425.7	45.7	1.41	1.46	5.56
MPD-20-005	223.5	739.3	515.8	0.41	0.22	1.5
Includes	308	500	192	0.74	0.48	2.75
includes	401	446	45	1.18	1.01	4
MPD-20-006	183.8	633	449.2	0.34	0.21	1.48
Includes	261	432	171	0.62	0.43	2.55
MPD-20-007	279	720	441	0.42	0.22	1.49
Includes	435	648	213	0.65	0.37	2.23
MPD-20-010	212	749	537	0.23	0.09	1.15
Includes	269	315.4	46.4	0.57	0.16	1.8
MPD-20-010	778	781	3	0.05	9.62	2.4

Source: APEX (2025)

^{*}Interval widths represent drilled core length. True width is unknown.

MPD-20-001 intersected a central zone of 0.39% copper, 0.12 g/t gold and 1.71 g/t silver over 78.5 m within a total mineralized envelope of 0.19% copper, 0.06 g/t gold and 0.76 g/t silver over 626.8 m from 152.0 to 778.8 m.

MPD-20-002 assayed 0.21% copper, 0.06 g/t gold and 0.84 g/t silver over 642 m, from 173.0 to 815.0 m. This includes separate intervals of 32.8 m of 0.46% copper, 0.12 g/t gold and 1.5 g/t silver between 416.2 and 449 m, and $58.8 \, \text{m}$ of $0.43 \, \text{m}$ copper, $0.08 \, \text{g/t}$ gold and $1.16 \, \text{g/t}$ silver from $627.2 \, \text{to}$ $686 \, \text{m}$.

MPD-20-004 returned an interval of 1.41% copper, 1.46 g/t gold and 5.56 g/t silver over 45.7 m, from 380.0 to 425.7 m within an interval of 0.49% copper, 0.29 g/t gold and 1.76 g/t silver over 535.1 m width, between 201.9 and 737.0 m downhole.

10.2.3 2021 Diamond Drilling

The 202,1 drilling consisted of a total of 21,674 m in 36 holes: 34 holes at the Gate Zone and two holes at the Dillard Area. Drilling in 2021 continued to focus on expanding the copper-gold mineralization at the Gate Zone through step-out drilling along the copper-in-soil anomaly and regional magnetic low.

Significant intercepts for the 2021 drilling program are presented in Table 10-21.

Table 10-21 2021 significant assay results intercepts - Gate and Dillard Zones.

Hole ID	From (m)	To (m)	Interval*(m)	Cu %	Au g/t	Ag g/t	Zone/Target
MPD-21-001	86	603.5	517.5	0.1	0.02	0.35	Gate
includes	359	454.9	95.9	0.17	0.03	0.5	Gate
and includes	556.4	603.5	47.1	0.12	0.03	0.35	Gate
MPD-21-002	150	687	537	0.15	0.04	0.57	Gate
and includes	453	603	150	0.24	0.06	0.96	Gate
MPD-21-003	102	648	546	0.12	0.04	0.48	Gate
and includes	576	648	72	0.39	0.09	1.23	Gate
MPD-21-004	184.8	546.2	361.4	0.35	0.18	1.5	Gate
includes	326	413	87	0.58	0.32	3.33	Gate
MPD-21-005	Lost hole						Gate
MPD-21-006	143	821	678	0.26	0.11	0.89	Gate
includes	623	674	51	0.54	0.36	2.77	Gate
and includes	737	821	84	0.4	0.08	0.5	Gate
MPD-21-007	116.0	248.0	132.0	0.15	0.08	0.43	Gate
MPD-21-008	377.0	479.0	102.0	0.15	0.11	1.10	Gate
MPD-21-009	245	713	468	0.25	0.16	0.51	Gate
and includes	446	533	87	0.51	0.43	0.81	Gate
MPD-21-010	95.0	516.3	421.3	0.07	0.04	0.13	Gate
MPD-21-011	110.0	113.5	3.5	0.08	3.58	0.60	Gate
MPD-21-012	254.0	689.0	435.0	0.23	0.06	0.20	Gate
includes	413.0	461.0	48.0	0.58	0.10	0.97	Gate
MPD-21-013	304.7	623.0	318.3	0.14	0.06	0.13	Gate
MPD-21-014	Lost hole						Gate
MPD-21-015	182.0	297.0	115.0	0.09	0.09	0.37	Gate

Hole ID	From (m)	To (m)	Interval*(m)	Cu %	Au g/t	Ag g/t	Zone/Target
and	536.0	542.0	6.0	0.15	2.40	6.20	Gate
MPD-21-016	21.0	720.0	699.0	0.29	0.12	0.87	Gate
and includes	567.0	672.0	105.0	0.50	0.39	1.57	Gate
MPD-21-017	158.0	455.0	297.0	0.23	0.10	0.89	Gate
includes	257.0	338.0	81.0	0.31	0.13	1.41	Gate
and includes	362.0	455.0	93.0	0.31	0.08	0.73	Gate
MPD-21-018	92.0	629.0	537.0	0.37	0.11	1.40	Gate
and includes	500.0	626.0	126.0	0.72	0.21	2.95	Gate
and includes	704.0	791.0	87.0	0.22	0.13	1.87	Gate
MPD-21-019	27.0	249.0	222.0	0.10	0.04	0.36	Gate
includes	177.0	213.0	36.0	0.15	0.06	0.83	Gate
MPD-21-020	33.0	159.0	126.0	0.19	0.06	0.28	Gate
includes	60.0	120.0	60.0	0.26	0.07	0.43	Gate
MPD-21-021	Lost hole						Gate
MPD-21-022	Lost hole						Gate
MPD-21-023	Lost hole						Gate
MPD-21-024	302.0	749.0	447.0	0.21	0.11	0.72	Gate
includes	512.0	554.0	42.0	0.32	0.34	1.56	Gate
and includes	608.0	662.0	54.0	0.30	0.18	1.22	Gate
MPD-21-025	Lost hole						Gate
MPD-21-026	371.0	803.0	432.0	0.27	0.13	0.78	Gate
includes	563.0	674.0	111.0	0.53	0.34	1.84	Gate
MPD-21-027	542.0	715.0	173.0	0.18	0.05	0.37	Gate
includes	614.0	641.0	27.0	0.56	0.16	1.10	Gate
MPD-21-028	296.0	426.6	130.6	0.27	0.06	1.07	Gate
includes	341.0	392.0	51.0	0.43	0.10	1.67	Gate
MPD-21-029	428.0	800.0	372.0	0.35	0.18	1.16	Gate
includes	464.0	614.0	150.0	0.50	0.28	1.86	Gate
MPD-21-030	349.0	806.0	457.0	0.15	0.04	0.14	Gate
includes	619.0	802.0	183.0	0.20	0.06	0.12	Gate
MPD-21-031	318.0	423.0	105.0	0.22	0.07	0.71	Gate
includes	338.5	366.0	27.5	0.37	0.13	1.39	Gate
and includes	402.0	423.0	21.0	0.46	0.17	1.84	Gate
MPD-21-032	414.0	594.6	180.6	0.14	0.04	0.36	Gate
includes	531.0	561.0	30.0	0.36	0.07	0.87	Gate
MPD-21-033	464.0	536.0	72.0	0.17	0.08	1.01	Gate
and	611.0	752.9	141.9	0.17	0.04	0.47	Gate
includes	695.0	749.0	54.0	0.27	0.06	0.76	Gate
MPD-21-034	21.0	577.5	556.5	0.15	0.08	0.36	Dillard
includes	86.0	114.8	28.8	0.36	0.16	0.24	Dillard
MPD-21-035	21.0	402.1	381.1	0.18	0.08	0.28	Dillard
includes	182.0	203.0	21.0	0.52	0.17	0.79	Dillard
MPD-21-036	Lost hole						Dillard

10.2.4 2022 Diamond Drilling

Diamond drilling in 2022 consisted of 26,104 m in 41 holes at 15 sites: 28 holes at the Gate/Prime Zones and 13 holes at the Dillard Area. The primary goal of the 2022 drill program was to: 1) continue delineating the Gate Zone by testing geophysical responses peripheral to the zone and filling in gaps from the 2021 program, and 2) test the historical Prime and Dillard zones at depth.

Initial 2022 drilling focused on infill drilling within the sparsely drilled southern Gate Zone. Drilling tested the continuity of the copper-gold-silver mineralization in gaps present after the 2021 drill program. Drilling at the Dillard target in 2022 confirmed a broad area of lower-grade copper-gold mineralization from bedrock surface to 530 m depth over a strike of 900 m. Exploratory holes MPD-22-021 to MPD-22-025 were drilled to test the 3D IP geophysical signatures south of Prime and east of the Gate Zone from east to west. MPD-22-025 reached target depth and provided valuable geological and structural information; however, the remaining four holes did not reach target depths due to difficult ground condition. Significant intercepts for the 2022 drilling program are presented in Table 10-22.

Table 10-22 2022 Significant Assay Intercepts - Gate, Prime and Dillard Zones

Hole ID	From (m)	To (m)	Interval* (m)	Cu %	Au g/t	Ag g/t	Area
MPD-22-001	324.9	335	10.1	0.05	0.01	0.78	Gate
MPD-22-002	401	628	227	0.2	0.06	0.1	Gate
includes	581	628	47	0.33	0.08	0.29	Gate
MPD-22-003	611	712.5	101.5	0.06	0.02	0	Gate
MPD-22-004	308	809	501	0.2	0.12	0.98	Gate
includes	452	566	114	0.3	0.2	2.36	Gate
MPD-22-005	206	921.2	715.2	0.13	0.07	0.65	Gate
includes	731	921.2	190.2	0.19	0.12	1.07	Gate
MPD-22-006	67.7	803	735.4	0.24	0.14	0.71	Gate
includes	587	704	117	0.69	0.46	2.22	Gate
MPD-22-007			Not Assaye	d			Gate
MPD-22-008	212	797	585	0.18	0.09	0.71	Gate
includes	674.1	734	59.9	0.33	0.25	1.77	Gate
MPD-22-009			Not Assaye	d			Gate
MPD-22-010			Not Assaye	d			Gate/Prime
MPD-22-011			Not Assaye	d			Exploration
MPD-22-012			Not Assaye	d			Exploration
MPD-22-013	261	591	330	0.11	0.09	0.55	Prime
includes	363	543	180	0.15	0.1	0.61	Prime
MPD-22-014	183	501	318	0.1	0.07	0.61	Prime
includes	324	372	48	0.23	0.1	1.04	Prime
MPD-22-015	210.8	264	53.2	0.11	0.13	1.39	Gate/Prime
and	885	922	37	0.22	0.15	0.66	Gate/Prime

^{*}Interval widths represent drilled core length. True width is unknown.

Hole ID	From (m)	To (m)	Interval* (m)	Cu %	Au g/t	Ag g/t	Area
MPD-22-016			Not Assaye	ed			Exploration
MPD-22-017	275	458	183	0.16	0.07	0.76	Prime/Gate
and	764	860	96	0.28	0.14	0.81	Prime
MPD-22-018	186	342	156	0.14	0.1	1.03	Gate/Prime
and	578	936	358	0.25	0.08	0.82	Gate/Prime
includes	738	915	177	0.32	0.11	1.13	Gate/Prime
MPD-22-019	260	620	360	0.12	0.08	0.67	Prime
includes	374	497	123	0.24	0.12	1.27	Prime
MPD-22-020	293	794	501	0.07	0.09	0.49	Prime
includes	299	362	60	0.17	0.31	1.2	Prime
MPD-22-021			Drill Hole Lo	st			Exploration
MPD-22-022			Drill Hole Lo	st			Exploration
MPD-22-023			Drill Hole Lo	st			Exploration
MPD-22-024			Drill Hole Lo	st			Exploration
MPD-22-025			Not Assaye	ed			Exploration
MPD-22-026	11.8	365	353.2	0.12	0.05	0.35	Dillard
MPD-22-027	9	359	350	0.08	0.06	0.32	Dillard
MPD-22-028			Drill Hole Lo	st			Dillard
MPD-22-029	15	534	519	0.12	0.04	0.31	Dillard
MPD-22-030	15	416	401	0.13	0.05	0.65	Dillard
MPD-22-031	33	377	344	0.12	0.12	0.84	Prime
includes	131	248	117	0.19	0.23	1.34	Prime
MPD-22-032	54	293	239	0.1	0.06	0.66	Gate/Prime
and	317	320	3	0.97	3.03	12.55	Gate/Prime
MPD-22-033	725	830	105	0.14	0.06	0.33	Gate/Prime
includes	743	770.3	27.3	0.28	0.03	0.32	Gate/Prime
MPD-22-034	97	286	189	0.12	0.05	0.33	Dillard
MPD-22-035	21	269	248	0.06	0.02	0.18	Dillard
MPD-22-036	21	491	470	0.09	0.03	0.23	Dillard
MPD-22-037	21.4	455	433.6	0.08	0.04	0.22	Dillard
MPD-22-038	30	380	350	0.14	0.08	0.32	Dillard
MPD-22-039	285	360	75	0.08	0.05	0.27	Dillard
MPD-22-040	24	320	296	0.09	0.1	0.34	Dillard
MPD-22-041			Not Assaye	ed .			Dillard

10.2.5 2023 Diamond Drilling

A total of 18,562 m of NQ size core was recovered in 33 diamond drill holes between April 26 and November 13, 2023. Targets drill tested in 2023 included the Man, Beyer, West, South, and 1516 Zones. The Man Zone

^{*}Interval widths represent drilled core length. True width is unknown.

drilling totalled 5,628 m in seven holes and five holes totalling 1,060 m at the Beyer Zone. Eleven holes totalling 5,989 m tested the West Zone, three holes totalling 2,854 m were completed at the South Zone and 3,031 m in seven holes were drilled at the 1516 Zone. The primary goal of the 2023 drill program was to explore beyond the flagship Gate prospect and evaluate additional targets on the Project. Significant intercepts for the 2023 drilling program are presented in Table 10-23.

Table 10-23 2023 Significant Assay Intercepts - Axe and MPD Claim Blocks

Hole ID	From (m)	To (m)	Interval (m)	% Cu	Au g/t	Ag g/t	Area
	. ,		Axe Claim I	Block			
AXE-23-001	6	539	533	0.18	0.2	0.61	West
includes	6	164	158	0.28	0.28	0.83	West
includes	374	431	57	0.14	0.48	0.64	West
AXE-23-002	6	488	482	0.15	0.16	0.8	West
includes	6	209	203	0.21	0.3	1.36	West
includes	182	209	27	0.5	0.4	1.8	West
and	644	819	175	0.11	0.13	0.53	West
includes	767	797	30	0.29	0.22	0.72	West
AXE-23-003	6	215	209	0.13	0.2	0.61	West
includes	164	215	51	0.22	0.27	1.08	West
and	274	289	16	0.93	0.64	3.2	West
AXE-23-004	13	400	387	0.14	0.23	0.52	West
includes	146	263	117	0.26	0.11	0.8	West
AXE-23-005	48	54	6	0.04	4.54	1.89	West
AXE-23-006	71	75	4	0.12	2.08	0.69	West
AXE-23-007	118	300	182	0.1	0.11	0.36	West
AXE-23-008	21	540	519	0.18	0.16	0.59	West
includes	33	231	198	0.33	0.18	0.88	West
includes	174	213	39	1.17	0.42	2.42	West
and	735	888	153	0.11	0.17	0.52	West
AXE-23-009	27	77	50	0.14	0.16	0.5	West
AXE-23-010	225	402	177	0.08	0.19	0.31	West
AXE-23-011	21	962	941	0.21	0.16	0.64	West
includes	21	275	254	0.49	0.29	1.3	West
includes	873	962	89	0.32	0.16	0.95	West
AXE-23-012	9	822	813	0.15	0.04	0.85	South
and includes	356	401	45	0.24	0.07	1.49	South
AXE-23-013	9	715	706	0.14	0.04	0.78	South
includes	277	359	82	0.24	0.07	0.96	South
and	413	485	72	0.29	0.08	1.16	South
AXE-23-014	9	1062	1053	0.17	0.05	0.8	South
includes	17	251	234	0.31	0.09	1.23	South
includes	67	155	88	0.38	0.11	1.25	South
AXE-23-015	36	49	13	0.43	0.04	659	1516

Hole ID	From (m)	To (m)	Interval (m)	% Cu	Au g/t	Ag g/t	Area			
AXE-23-016	• • •	Drill Hole Lost	or No Signific	ant Assay c	r Not Assaye	ed	1516			
AXE-23-017		Drill Hole Lost	or No Signific	ant Assay c	r Not Assaye	ed	1516			
AXE-23-018	368	1516	525	0.08	0.02	1.71	1516 Zone			
includes	368	1516	258	0.1	0.02	2.14	1516 Zone			
AXE-23-019		Drill Hole Lost	or No Signific	ant Assay c	or Not Assaye	ed	1516			
AXE-23-020		Drill Hole Lost or No Significant Assay or Not Assayed								
AXE-23-021		Drill Hole Lost	or No Signific	ant Assay c	r Not Assaye	ed	1516			
			MPD Claim	Block						
MPD-23-001	30	281	251	0.11	0.12	0.44	Man			
includes	30	Man	118	0.15	0.15	0.49	Man			
and	482	Man	324	0.14	0.08	0.41	Man			
includes	491	Man	75	0.25	0.23	0.7	Man			
and	914	Man	81	0.08	0.06	0.29	Man			
MPD-23-002	29	Man	337	0.17	0.17	0.86	Man			
includes	199	Man	116	0.34	0.28	1.71	Man			
and	745	Man	179	0.05	0.18	0.44	Man			
includes	822	Man	60	0.09	0.43	0.77	Man			
MPD-23-003	28	Man	151	0.08	0.11	0.3	Man			
and	626	Man	165	0.13	0.08	0.35	Man			
MPD-23-004		Drill Hole Lost	or No Signific	ant Assay c	or Not Assaye	ed	Man			
MPD-23-005	101	255	154	0.17	0.25	0.56	Man			
MPD-23-006	195	255	60	0.15	0.37	0.76	Man			
MPD-23-007	48	93	45	0.18	0.11	0.99	Man			
and	270	342	72	0.12	0.15	0.71	Man			
MPD-23-008		Drill Hole Lost	or No Signific	ant Assay c	or Not Assaye	ed	Beyer			
MPD-23-009		Drill Hole Lost	or No Signific	ant Assay c	or Not Assaye	ed	Beyer			
MPD-23-010		Drill Hole Lost or No Significant Assay or Not Assayed								
MPD-23-011		Drill Hole Lost	or No Signific	ant Assay c	r Not Assaye	ed	Beyer			
MPD-23-012		Drill Hole Lost	or No Signific	ant Assay c	r Not Assaye	ed	Beyer			

10.2.6 2024 Diamond Drilling

Kodiak completed 9,249 m in 25 holes over seven target areas in 2024. The Belcarra Target drilling totalled 1,868 m in four holes and six holes totalling 1,995 m were completed at the Blue Target. Four holes totalling 903 m tested the 1516 Zone, two holes totalling 858 m investigated the Celeste Target, the Adit Zone drilling totalled 1,906 m in five holes, and two holes were drilled into both the South Zone (1,031 m) and Mid Zone (688 m). The primary goal of the 2024 drill program was to drill new targets developed by Kodiak's exploration team and VRIFY's AI predictive modeling. It also included further drilling to expand the near-surface mineralization envelopes within and adjacent to existing zones. Targets drill tested in 2024 included the

^{*}Interval widths represent drilled core length. True width is unknown.

Belcarra, Blue, 1516, Celeste, Adit, South and Mid Zones. Significant intercepts for the 2024 drilling program are presented in Table 10-24.

Table 10-24 2024 Significant Assay Intercepts - Axe and MPD Claim Blocks

Hole ID	From (m)	To (m)	Interval (m)	Cu %	Au g/t	Ag g/t	Area
			AXE Claim E	Block			
AXE-24-001	Dr	ill Hole Lost	or No Signifi	cant Assay (or Not Assay	ed	1516
AXE-24-002	Dr	ill Hole Lost	or No Signific	cant Assay (or Not Assay	ed	1516
AXE-24-003	Dr	ill Hole Lost	or No Signifi	cant Assay (or Not Assay	ed	1516
AXE-24-004	Dr	ill Hole Lost	or No Signific	cant Assay (or Not Assay	ed	1516
AXE-24-005	Dr	ill Hole Lost	or No Signifi	cant Assay (or Not Assay	ed	Celeste
AXE-24-006	Dr	ill Hole Lost	or No Signific	cant Assay (or Not Assay	ed	Celeste
AXE-24-007	89	446	357	0.43	0.02	10.05	Adit
includes	89	245	156	0.69	0.04	20.41	Adit
includes	151	164	13	1.74	0.03	194.98	Adit
and includes	206	227	21	1.24	0.02	5.36	Adit
and includes	347	398	51	0.54	0.01	2.55	Adit
AXE-24-009	21	348	327	0.26	0.04	3.57	Adit
includes	112	251	139	0.38	0.05	5.37	Adit
includes	218	242	24	1	0.02	6.72	Adit
includes	287	302	15	1.08	0.04	6.84	Adit
AXE-24-011	63	513	450	0.17	0.03	1.42	Adit
includes	102	395	293	0.23	0.04	1.71	Adit
includes	102	171	69	0.31	0.1	2.46	Adit
includes	143	162	19	0.44	0.03	3.84	Adit
and includes	345	363	18	0.64	0.01	1.37	Adit
AXE-24-013*	47	86	39	0.12	0.04	0.51	Adit
AXE-24-015*	131	155	24	0.15	0.04	0.6	Adit
includes	151	155	4	0.64	0.14	2.32	Adit
AXE-24-008	239	513	274	0.14	0.03	1.08	South
includes	239	375	136	0.17	0.05	1.24	South
AXE-24-010	216	314	98	0.11	0.03	1.04	South
and	437	500	63	0.2	0.08	1.6	South
includes	445	461	16	0.34	0.15	2.56	South
AXE-24-012	174	329	155	0.08	0.04	0.65	Mid
includes	174	188	14	0.37	0.08	2.14	Mid
AXE-24-014	Dr	ill Hole Lost	or No Signifi	cant Assay (or Not Assay	ed	Mid
			MPD Claim B	Block			
MPD-23-001	Dr	ill Hole Lost	or No Signifi	cant Assay (or Not Assay	ed	Belcarra
MPD-23-002	Dr	ill Hole Lost	or No Signifi	cant Assay (or Not Assay	ed	Belcarra
MPD-23-003	Dr	ill Hole Lost	or No Signifi	cant Assay (or Not Assay	ed	Belcarra
MPD-24-004	117	151	34	0.13	0.32	0.94	Belcarra
includes	138	151	13	0.2	0.81	1.94	Belcarra

Hole ID	From (m)	To (m)	Interval (m)	Cu %	Au g/t	Ag g/t	Area
MPD-24-005	Dı	rill Hole Lost	or No Signifi	cant Assay o	or Not Assay	ed	Blue
MPD-24-006	Di	rill Hole Lost	or No Signifi	cant Assay o	or Not Assay	ed	Blue
MPD-24-007	Di	rill Hole Lost	or No Signifi	cant Assay o	or Not Assay	ed	Blue
MPD-24-008	Dı	rill Hole Lost	or No Signifi	cant Assay o	or Not Assay	ed	Blue
MPD-24-009	Dı	rill Hole Lost	or No Signifi	cant Assay o	or Not Assay	ed	Blue
MPD-24-010	Di	rill Hole Lost	or No Signifi	cant Assay o	or Not Assay	ed	Blue

^{*}Interval widths represent drilled core length. True width is unknown.

11 Sample Preparation, Analyses and Security

11.1 Historical Drill Hole Samples

Information in Section 11.1 is presented for context as associated historical drill holes have been included in the Mineral Resource Estimate. Information presented in this Section was compiled from various publicly available reports in the Assessment Report Indexing System ("ARIS") from the Province of British Columbia, including Wynne, 1989; Cormier, 1992; Aulis, 1991b and 1992; Thomson, 2006 and 2007; Gilmour and Koffyberg, 2010; Murton, 2014; Peters, 2014 and 2015; Peterson et al., 2016; and, Peterson and Luckman, 2017.

11.1.1 1988-1989 Brican Resources Ltd. Diamond Drill Program

All of the diamond drill core was split at Brican's Vernon warehouse and one half was shipped to Bondar-Clegg's North Vancouver laboratory for analysis. Bondar-Clegg was acquired by ALS in 2001. At Bondar-Clegg, samples were digested using HNO3-HCL solution and analyzed by atomic absorption spectroscopy. Additional subsamples were taken for gold analysis by fire assay fusion (Wynne, 1989). No information is available about the QA/QC procedures for the 1988-1989 Brican drill program.

11.1.2 1991 Fairfield Minerals Ltd. Diamond Drill Program

Diamond drill core was delivered to the Fairfield's field core shack located on the property, 2.5 km north of the drill grid. Core with visible copper mineralization or greater than 1% pyrite was split, sampled (typically at 3 metre intervals), and sent to Acme Analytical Laboratories (Acme) in Vancouver. Acme was acquired by Bureau Veritas in 2012. Samples were digested with HCL-HNO3-H2O aqua regia, then was analyzed by inductively-coupled plasma mass spectrometry (ICP-MS). Gold was assayed with fire assay. Laboratory standards and duplicates were used at ACME (Cormier, 1992). No information is available about the field QA/QC procedures for the 1991 Fairfield drill program.

11.1.3 1991-1992 Cominco Ltd. Percussion Drill Program

Drill cuttings were collected every 3.05 m for analysis (approximately 1/12 split of total cuttings) and sent to Cominco Exploration Research Laboratory in Vancouver. Analysis for gold and copper was done using aqua regia digestion and atomic absorption spectrometry. No information is available about the QA/QC procedures for the 1991-1992 Cominco drill program.

11.1.4 2005-2007 Copper Belt Resources Ltd. Diamond Drill Program

During the drill program, the drill crew worked out of a trailer camp established at the property. Core logging and sampling was completed in a steel container unit. Drill core was split using a manual core splitter. Sampling of drill core was based on visual concentrations of pyrite/chalcopyrite. In the 2005 drill program, core samples were delivered to Eco-Tech Laboratories Ltd. (Eco-Tech), in Kamloops B.C. Analysis of copper was done with aqua regia digestion and atomic absorption spectrometry. Gold was assayed with fire assay. Laboratory standards and duplicates were used at Eco Tech. Field QA/QC samples were not used in the 2005 Copper Belt drill program.

In the 2006-2007 drill program, core samples were analyzed at ALS Vancouver. Samples were digested using aqua regia (HCI-HN03-H20), then was analyzed by inductively-coupled plasma mass spectroscopy (ICP-MS). Additional subsamples were taken for gold analysis by fire assay fusion. Laboratory standards and duplicates were used at ALS. Field standards and blanks, as well as duplicates (only for the 2006 program), were used as QA/QC by Copper Belt in the 2006-2007 drill programs. After every 20 samples, QA/QC samples were inserted with blanks and standards rotating. Blank material or the type of standards that were used are unknown.

11.1.5 2007-2010 Candorado Operating Company Diamond Drill Program

Core logging and splitting was done at Candorado's core logging facility, located on private property north of Princeton. Core was sampled in 2-metre intervals with a few exceptions. Drill core samples were placed in rice bags and shipped by Clark Freightways for analysis. Throughout the years, three labs were utilized: International Plasma Laboratories (Int Plasma), Acme and Eco-Tech.

Sample preparation and analysis at Int Plasma involved the use of inductively-coupled plasma emission spectrometry (ICP-ES) for 30 multi-element analysis and fire assay with atomic absorption spectroscopy finish (FA-AAS) for gold analysis. At Acme, samples underwent digestion using aqua regia (HCI-HNO3-H20), then was analysed by inductively-coupled plasma mass spectrometry (ICP-MS) for 36 multi-elemental analysis and fire assay fusion with subsequent inductively-coupled plasma emission spectroscopy (ICP-ES). Eco-Tech used an aqua regia digestion followed by inductively-coupled plasma emission spectrometry for a suite of 28 elements.

Field blanks consisting of feldspar porphyry rock, which had been collected at the bottom of a talus slope on the Summers Creek highway, were added to the batches after every 20 samples. This rock had been previously analysed for use as a blank with 10 analyses and found to be "clean" or devoid of copper and gold mineralization. A field standard (OREAS Pb50) was added every 30th sample within the rock sample sequence. Field duplicates were collected every 20th sample and consisted of the second half of the split core. Quality control samples from the labs include control blanks, duplicates and standards.

11.1.6 2013 Sunrise Resources Ltd. Diamond Drill Program

Drill core was logged on site and subsequently transferred to secure storage at Sunrise Resources' warehouse in Armstrong, B.C. Sample intervals were marked during logging and subsequently split/sawn in half at the Armstrong facility by Sunrise personnel. Complete holes were split in 1 m intervals except for several selected shorter intervals where better mineralization was observed. Samples were submitted to Activation Laboratories Ltd. ("Actlabs") facilities in Kamloops, B.C.

At Actlabs, after digesting samples with aqua regia, a sub-sample underwent inductively-coupled plasma emission spectrometry analyses for a suite of 35 elements. A separate analysis for gold was performed on all samples by fire assay with AA finish.

Field blanks, commercial standards and field duplicate sample assays were inserted in the sample stream approximately every 20-30 samples. Quality control samples from the labs include control blanks, duplicates and standards.

11.1.7 2013-2014 Fjordland Exploration Inc. Diamond Drill Program

Drill core was transported from the property at the end of each shift to a leased secure core logging facility located at Merritt, B.C. The core was then logged, split, and stored at the facility. All of the core from the 2013-2014 drill programs was split and sampled. Core was split in half using a conventional manual core splitter, one half placed into plastic sample bags with identifying tag and closed using plastic strap closures. The remaining drill core half was left in labeled core boxes at the core logging facility with a copy of the sample tag affixed to the box. Samples were selected at approximately 2.5 to 3.0 m intervals depending on geology and mineralization. Samples were sealed and inserted into large rice sacks, labeled with the sample range and company name prior to shipping. Samples were delivered to Acme Analytical Laboratories Ltd (Acme) at their Vancouver facilities in 2013 and ALS preparation facility located in Kamloops in 2014.

In 2013, core samples were analyzed for a 36-element suite using inductively-coupled plasma mass spectrometry and aqua regia analyses at Acme. All results greater than 100 ppb gold were re-analyzed by fire Assay with an AAS finish for gold, platinum and palladium. In 2014, core samples were analyzed for a 51-element suite at ALS with aqua regia digestion and inductively-coupled plasma mass spectrometry.

Sampling QA/QC for the 2013-2014 drill program consisted of inserting field standards and certified blanks (only in the 2014 program) into the core sample streams at a frequency of 1 standard per ~ 25 samples. Field standards (CU183), pre-packaged 60 g sealed foil patches, were purchased from WCM Minerals of Burnaby, BC. and used to assess laboratory precision and accuracy. Acme and ALS laboratory's QA/QC procedures consisted of introducing a variety of standards, pulp duplicates, preparation duplicates, blanks, and prep wash blanks. Field standards and blanks were compared with certified standard values on a batch basis to test for contamination during the sampling process. No large outliers were detected, and no reruns were requested. All analyses on laboratory standards were within acceptable levels.

11.1.8 2015-2016 KZD Aspen Grove Holding Ltd. Diamond Drill Program

Drill core was collected by the drilling crew and placed in boxes clearly labeled with drill hole designation and box number. Core was delivered directly by pickup truck to a secure fenced core logging facility in Merritt. The core was then geologically logged by the geologist and sample intervals were laid out and marked with laboratory tags. Two tag parts were stapled to core boxes and one was retained in the sample booklet. Sample intervals were generally 2 m except at the beginning and end of hole, and where core loss required interval aggregation. The core boxes were then brought to the core cutter, who cut (using a rock saw with fresh water supply) or split (using a hydraulic splitter) at their discretion (to maximize speed and minimize core loss). One part of the laboratory tags for each sample remained stapled to the box, and one part was inserted in the sample bags. Zip tied sample bags were then inserted into large wood bins. Bins were picked up directly from the core facility by ALS, Kamloops branch, on a weekly basis. Remaining core was stacked, banded, and stored in a fenced yard in Merritt.

Sample preparation was carried out at ALS's prep laboratory in Kamloops. Samples were dried, weighed and crushed to 70% less than 2 mm, and smaller splits were pulverized to 85% less than 75 μ m. The pulps were shipped to ALS's North Vancouver laboratory for analysis. At the laboratory in North Vancouver, 30 g aliquots were processed for Au, Pt, and Pd by fire assay and finished using inductively-coupled plasma atomic emission spectrometry (ICP-AES). Aliquots were also digested with aqua regia for 35 elements, finished by inductively-coupled plasma atomic emission spectrometry (ICP-AES).

QA/QC samples were inserted by KZD geologists. These were inserted at a rate of 1 in 5, rotating between 1) blanks, 2) duplicates (alternating between pulp duplicates and coarse reject duplicates) and 3) standards, for a rate of 1 in 15 for each type of QA/QC sample. Three pulp standards were used (for an overall insertion rate of 1 in 45 for each standard): CDN-CM-23, CDN-PGMS-25, and CDN-CM-35, which are powdered and

packaged multi-element standards prepared by CDN Resource Laboratories of Langley BC. The CM-23 standard is certified for gold, copper, and molybdenum; the CM-35 standard is certified for silver and sulphur in addition to the above. CDN-PGMS-25 is certified for gold, platinum, and palladium by fire assay. Blanks consisted of gravel-sized landscaping limestone pieces. Duplicates consisted of pulps and coarse rejects that were prepared as separate aliquots (in the case of coarse rejects) and analyzed in ALS's North Vancouver laboratory concurrently with the original samples.

11.2 2019 - 2024 Kodiak Exploration Programs

11.2.1 Sample Preparation

11.2.1.1 Diamond Drill Core Processing and Sampling

Full Force Drilling Ltd. of Peachland, BC completed the 2019 diamond drilling. Atlas Drilling Ltd. of Kamloops, BC was contracted for the 2020 to 2024 drill programs. Diamond drilling was completed using one to two skid mounted A5 drill rigs and a D6 bulldozer. All core logging and operations staff were based out of Merritt from 2019 to 2023. In 2024, the drill crew was based out of Princeton, as it is closer to the southern drill targets.

Rigs operated 24 hours per day using two-man crews on 12-hour shifts, driving to and from the Project daily. The A5 drill rig can achieve a maximum depth of approximately 1,000 m of NQ core. Three-metre drill rods were used to recover core. Downhole survey data, including azimuth and dip measurements and standard deviations, were recorded at intervals of 100 m downhole and at the bottom of the hole using a Reflex survey tool. In 2023 and 2024 programs, continuous surveying was done at the end of holes using a DeviGyro survey tool.

Core was collected by the drilling crew and placed in wooden boxes clearly labeled with drill hole designation and box number at each drill site. Wooden depth marker blocks were inserted by the drill helper at the end of each run of core recovered. Core was delivered directly by pickup truck to Kodiak's Merritt field office and core processing facility.

At the core processing facility, core boxes were opened, then core was carefully cleaned and personnel proceeded with depth mark checks and geotechnical data capture including core recovery, rock quality designation (RQD), fractures, and strength. Specific gravity (using wet/dry method) measurements were carried out every 6 metres, while magnetic susceptibility measurements were collected every metre. Drill core was logged by a geologist onsite. Geological logging included lithology, structure, alteration and mineralization, and all observations were entered into a drill hole database. During geological logging, core sampling intervals were defined by geologists and cut marks were placed on core, respecting lithological contacts, structural features and mineralization. Sample intervals were generally 3 metres. Sample booklets consist of three assay tags for each unique number. Two sample tags were stapled to core boxes, and one was retained in the sample booklet. Drill hole number, drilling interval, and assay tag numbers were recorded on the remaining assay tag and in database.

Quality assurance / quality control (QA/QC) samples were also inserted by geologists. Quality control standard and blank samples were inserted into the sample sequence at an average rate of 1 standard, 1 blank or 1 duplicate sample per 10 drill core samples, representing approximately 10 percent of total samples.

Logged drill core was then photographed. Core boxes were then labelled with an embossed aluminum tag documenting the hole number, box number and drilled interval contained in each box. Core boxes were then transferred to the core cutting room or secure storage yard for splitting. The marked sample intervals were cut in half lengthwise using a diamond rock saw. After each sample, the sample tray is cleaned with a hose to minimize contamination. One half of the sawn drill core was placed in a labeled 6-mil sample bag and the other half of the drill core was returned to its correct position in the core box. One of the sample tags was placed in the core sample bag before the bag was securely sealed. Zip tied sample bags were then inserted into large wood crates. Crates were picked up from the core facility by Ace Courier, Kamloops B.C. on a weekly basis and delivered to ALS in North Vancouver. On rare occasions, samples were directly transported to ALS by Kodiak crew with pickup trucks. Remaining core was stacked, banded, and stored in a fenced yard in Merritt.

Upon completion of the drilling program, diamond drill core and assay sample rejects were catalogued and securely stored in Kodiak's field office and core storage facility in Merritt, British Columbia.

11.2.1.2 Surface Rock and Trench Sampling

A total of 706 rock samples is catalogued in the sample database, including 220 trench rock samples, 438 prospecting rock samples and 48 QA/QC samples (including blanks and standards). Rock grab samples were collected from outcrop, subcrop or boulder float. These samples were identified and collected by means of rock hammer and cold chisel. A 0.5-2.0 kilogram sample of mineralized material was collected for assay and placed in a plastic sample bag. Each sample was identified with a unique number, and its geographic coordinates and geological characteristics were recorded in a field notebook. Geographic coordinates were determined by means of handheld GPS. At the end of each day, data was entered digitally on a computer (rock observations, sample numbers, coordinates, etc.) into an excel spreadsheet. Recently these samples were input into an MX Deposit database.

In preparation for shipping, rock samples were placed into 5-gallon plastic buckets or large wove (rice) bags, sealed securely, and addressed to the ALS Laboratory. Samples were transported to ALS Laboratories (ALS) in North Vancouver for sample preparation and final analysis.

11.2.1.3 Soil Sampling

Sampling grids and each sample site were uploaded to hand-held GPS devices. No cut lines or other grid preparation was required. As needed, individual sample sites were moved several metres to obtain suitable soil media for analysis. Using a spade, soil was collected from the top 5 to 15 centimetres (Upper "B" horizon) of the hole at each site. Approximately 500 grams of material was collected per site and packed into a kraft paper envelope with a sample tag inserted into the bag. Notes on the sample location, soil texture, moisture content, and percentage of rock fragments, composition, colour, vegetation type and the depth of the sample are recorded on site.

Soil samples were dried on site and packed into rice bags and wooden crates for transport to ALS in North Vancouver for sample preparation and final analysis. Kodiak's quality assurance and quality control (QA/QC) protocols included inserting field blanks, standards, and duplicates into the sample inventory at the project site prior to sample shipment. Approximately one QA/QC sample was inserted for every 10 soil samples. Soil samples were shipped by Ace Couriers from Merritt, BC directly to the laboratory. On rare occasions, samples were directly transported to ALS by Kodiak crew with pickup trucks.

11.2.2 Sample Analyses and Assays

11.2.2.1 Diamond Drill Core, Rock and Trench Samples

ALS Minerals (ALS) is accredited with international standard ISO 17025. ALS is independent of Kodiak, and the Authors of this report. At ALS in North Vancouver, samples were crushed, pulverized, and split to > 85% passing a 75-micron screen. Sample pulp aliquots were analyzed using ALS's Fire Assay Fusion method (Au-AA24) with an AAS finish for gold, followed by a multi-element four acid digest ICP-AES (ME-ICP61, 2019 - 2022) and ICP-MS (ME-MS61, 2022 - 2024) analysis. For Fire Assay, the prepared samples were fused with various reagents then 6 mg of gold-free silver was added and cupelled to yield a precious metal bead. The bead was then digested in 0.5 ml of dilute nitric acid in a microwave oven. The 0.5 ml concentrated hydrochloric acid was added, and the bead was further digested at a lower power setting. The solution was cooled, diluted to a total volume of 4 ml with de-mineralized water, and then analyzed by atomic absorption spectroscopy against matrix-matched standards (ALS, 2017). For ICP-AES analysis, a 0.25 g prepared sample was digested with various acids. The residue was topped up with dilute hydrochloric acid and the resulting solution is analyzed by inductively coupled plasma-atomic emission spectrometry.

From 2019 to mid 2022 field season, ALS's ME-ICP61 method was used for drill core, rock and trench samples. In order to get better geochemical precision and additional elements, in June 2022 Kodiak switched to ALS's ME-MS61 method. This method involves the same steps of preparation and digestion, but the final solution is analyzed by a combination of inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS) with results corrected for spectral or isotopic interferences.

ALS has quality control verification steps in place for all critical processes from sample receipt through data distribution. The ALS Laboratory Information Management System (LIMS) captures all essential information automatically and, as each required QC check is performed, triggers an approval step that must be completed prior to any further progression. All QC information can be retrieved at any time and the high degree of visibility extends to regular, routine reviews by management and independent QC groups to ensure conformity.

Along with quality control steps applied by the ALS LIMS, the quality program includes laboratory audits, implementation of global standard operating procedures, personnel training and laboratory support, secure data management and participation in internal and internationally recognised 3rd party Round Robins.

When a sample returns an assay result above the upper limit, generally copper >10,000 ppm, an additional analysis is required (ME-OG62). Assays for the evaluation of high-grade materials are optimized for accuracy and precision at high concentrations. A prepared sample is digested with various acids and then evaporated to incipient dryness. Hydrochloric acid and de-ionized water are added for further digestion, and the sample is heated for an additional allotted time. The sample is cooled to room temperature and transferred to a volumetric flask. The resulting solution is diluted to volume with de-ionized water, homogenized, and the resulting solution is analyzed. ALS' QA/QC includes analysis of internal standard samples, laboratory duplicate samples, re-assaying of samples, and the insertion of blanks into the sample stream.

Any samples that returned gold values exceeding 3 g/t were re-assayed using gravimetric assay methods as follows:

For the analysis of higher-grade gold samples (having approximately 10 g/t or higher of gold), each sample is mixed with a lead-based flux and fused. Each sample has a silver solution added to it prior to fusion. The fusing process results in a lead button that contains all of the gold from the samples as well as the silver that is added. The buttons are then placed in a cupelling furnace where all of the lead is absorbed by the bone

cupels and a silver bead, which contains any gold is left in each cupel. Once the cupels have cooled sufficiently, the silver bead from each is placed in an appropriately labeled porcelain cupel and digested using dilute nitric acid to remove the silver. The remaining sponge is rinsed with water and annealed using a torch to produce a gold bead. The gold bead is weighed on a microbalance.

11.2.2.2 Soil Samples

At ALS in North Vancouver, soil samples are dried and dry-sieved using a 180 micron (Tyler 80 mesh) screen. Sample pulp aliquots were analyzed using ALS's Super Trace Level gold and multi-element ICP-MS analysis (AuME-ST43). A finely pulverized sample (25g) is cold digested with HNO3, then HCl is added, and the sample is heated at 130°C for 40 minutes. Digestion is carried out in disposable plastic bottles to eliminate cross-contamination from digestion vessels and heated via graphite block for even heating. Analysis via ICP-MS instrumentation utilizing collision/reaction cell technologies provide super trace detection limits for gold and multi-element

11.2.3 Quality Assurance and Quality Control Program

11.2.3.1 Diamond Drill Core QA/QC

For the 2019 to 2024 drilling programs Kodiak established a Quality Assurance and Quality Control (QA/QC) program utilizing quality control samples to monitor accuracy (i.e. sample standards), contamination (i.e. sample blanks), precision (i.e. duplicates) and other possible sampling errors (i.e. sample mislabelling).

The QA/QC protocol targeted an insertion rate of 10 percent control samples. A QA/QC sample was inserted within every 10 consecutive samples, alternating between standard, blank or duplicate samples (1:2:2). The standard and blank samples were to be inserted into the sample sequence as the sample shipment was being prepared. Any duplicate samples were inserted into the sample sequence at the time of collection. QA/QC samples were numbered within sequence.

A total of 3,932 QA/QC samples were submitted to the lab including 1,125 blanks, 2,249 duplicates and 558 standards (Table 11-1).

Table 11-1 2019-2024 Drill Program QA/QC Sample Insertion Rates

Year	2019	2020	2021	2022	2023	2024	Total
Regular Sample	592	2,128	6,827	6,987	5,974	2,831	25,339
BLK-EJW	0	0	0	122	0	0	122
BLK-MMB	26	95	304	13	0	0	438
BLK-MMR	0	0	0	163	0	0	163
BLK-SiO2	0	0	0	10	266	126	402
Total Blanks	26	95	304	308	266	126	1125
CDN-ME-1409	0	0	0	110	108	42	260
CDN-CM-37	13	42	145	39	0	0	239
CDN-CM-18	0	6	6	8	20	17	57
CDN-ME-2314	0	0	0	0	0	2	2

Year	2019	2020	2021	2022	2023	2024	Total
Standards	13	48	151	157	128	61	558
Duplicates	26	74	244	273	335	174	1126
Total	657	2,345	7,526	7,725	6,703	3,192	28,148
Insertion Rates							
Blanks	3.96%	4.05%	4.04%	3.99%	3.97%	3.95%	4.00%
Standards	1.98%	2.05%	2.01%	2.03%	1.91%	1.91%	1.98%
Duplicates	3.96%	3.16%	3.24%	3.53%	5.00%	5.45%	4.00%
Total QAQC	9.89%	9.25%	9.29%	9.55%	10.88%	11.31%	9.98%

Standards

Analytical standards or certified reference material ("CRM") are inserted into the sample stream to verify the accuracy of laboratory results. Standards used during the 2019 to 2024 field programs were CDN-CM-37, CDN-ME-1409, CDN-CM-18, and CDN-ME-2314, as referenced by CDN Resource Laboratories Ltd. Due to supply disruptions over the years, Kodiak has had to switch between different standard types. CDN-CM-18 and CDN-ME-2314 are classified as high-grade Cu-Au standards, while CDN-CM-37 and CDN-ME-1409 represent low-grade Cu-Au standards. The selection of standard type is determined by the logging geologist based on the level of mineralization.

Standard reference material ('SRM') samples were purchased in individual 60 to 100-gram foil packets from CDN Resource Laboratories Ltd. (CDN Resource), a qualified third-party vendor. CDN Resource is accredited with international standard ISO 17025.

A total of 558 standards were inserted. Results of gold and copper analyses for all standards are illustrated in Figure 11.1 as well as Table 11-2.

CRM CDN-CM-37 reported assays for copper within 2 standard deviations of the certified values. Two gold values were above 2 standard deviations above the certified values (0.009 ppm and 0.018 ppm) but within 3 standard deviations.

CRM CDN-CM-1409 one Au standard was reported with 0.008 ppm Au over the 2 standard deviations above the certified value. A second Au standard was reported 0.008 ppm Au below the 3 standard deviations below the certified value.

CRM CDN-CM-2314 reported assays for copper and gold within 2 standard deviations of the certified values.

CRM CDN-CM-18 reported a total of four copper failures in high grade standard. Kodiak contacted ALS to rerun 10 samples before and after the failed standard. It was concluded that there was a calibration error for the overlimit copper method (ME-OG62). Rerun analyses were in good agreement with the original assays.

CRMs CDN-CM-37 and CDN-CM-2314 reported assays for gold within the certified values.

CRM CDN-CM-1409 and CDN-CM-18 reported one fail each for gold.

CRM CDN-CM-18 reported one Au assay result more than 3 standard deviation below the certified value.

Figure 11.1 2019 - 2022 Drilling QA/QC Standard CDN-CM-37, CDN-CM-18, CDN-CM-1409 gold and copper assays

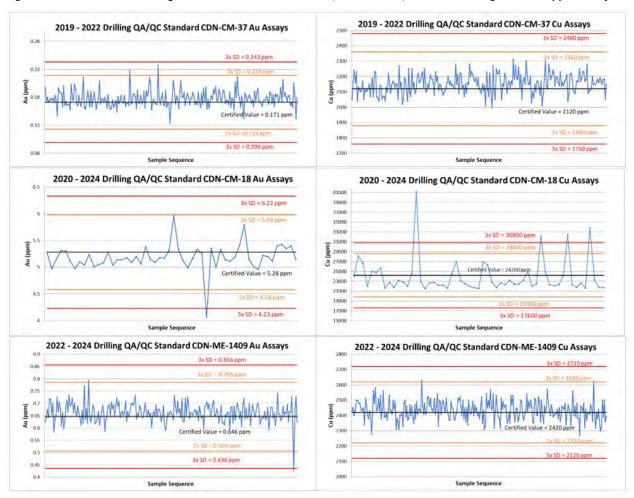


Table 11-2 Additional 2024 QA/QC CDN-ME-2314 Au and Cu standard

CRM code	Value	Certified value	Standard deviation	2SD Low	2SD High	2SD	3SD Low	3SD High	3SD	Analyte	Unit
CDN-ME-2314	3.98	4.23	0.31	3.61	4.85	PASS LOW	3.3	5.16	PASS LOW	Au	ppm
	4.11	4.23	0.51		4.00	PASS LOW	0.0	3.10	PASS LOW	Au	
CDN ME-2214	17150	17200	680	15840	18560	PASS LOW	15160	19240	PASS LOW	Cu	nnm
CDN-ME-2314	17300					PASS HIGH			PASS LOW	Cu	ppm

Blanks

Blanks were inserted approximately every 20 samples. Blanks used in Kodiak's drill program were mountain magic black (MMB, 2019-2022), mountain magic red (MMR, 2022), Wildhorse Suite (EJW) field blanks and certified SiO₂ blank (2022-2024). Mountain magic black and red are common decorative products consisting of volcanic scoria. Field blanks were collected from granodiorite Wildhorse Unit within the Property. These rocks were previously analysed for use as a blank and found to be barren of copper and gold mineralization.

According to the database, a total of 1,126 blanks was inserted within the sampling sequence and analyzed for copper, while 1,123 gold assays were reported from these blanks. Results of gold and copper analyses for all blanks are illustrated in Figure 11.2. A few failures were identified and were addressed by requesting reanalysis when appropriate and possible.

Field Duplicates

Duplicate samples are taken approximately on sample numbers ending in -10, 30, 70, 90 and are collected to assess the repeatability of individual analytical values. Half of the core is used as the "original" sample, one quarter of the remaining core was used as the "field duplicate" sample and one quarter remained in the core box. Figure 11.3 illustrates the original versus duplicate analytical values for gold and copper. The results show good reproducibility for gold and copper with a coefficient of correlations of 0.80 for gold and 0.96 for copper. A total of 1,126 core intervals were quartered and submitted for duplicate analyses within the primary sample batches. Results of the gold and copper analyses for all duplicates are illustrated in Figure 11.3.

11.2.3.2 Surface Rock and Trench Sampling QA/QC

For the 2019 to 2024 prospecting and trenching programs, Kodiak established a QA/QC program utilizing quality control samples to monitor accuracy (i.e. sample standards), contamination (i.e. sample blanks) and other possible sampling errors (i.e. sample mislabelling).

Field blanks and standards were inserted every 20 samples or for each sample shipment. Duplicates were not used. The standard and blank samples were inserted within sample sequence.

Figure 11.2 Blanks between 2019 and 2024 drilling QA/QC for gold and copper, for Mountain magic black (MMB), Mountain magic red (MMR), EJW blank, and Certified SiO_2 blank

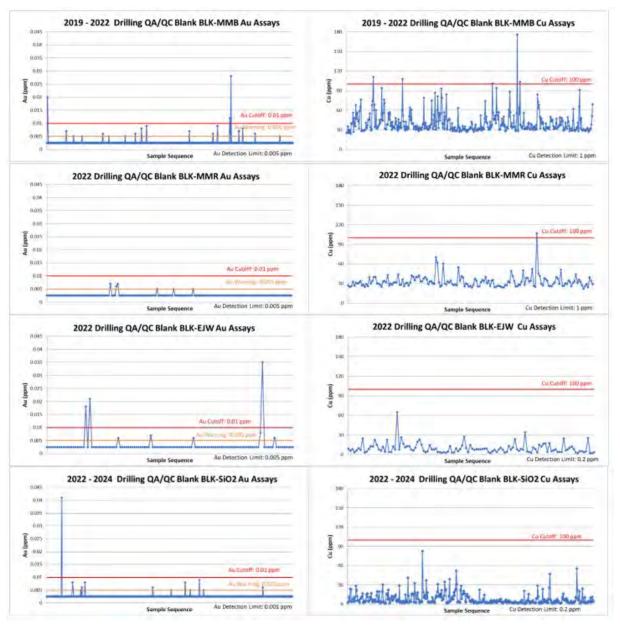


Figure 11.3 Drilling Field Duplicates

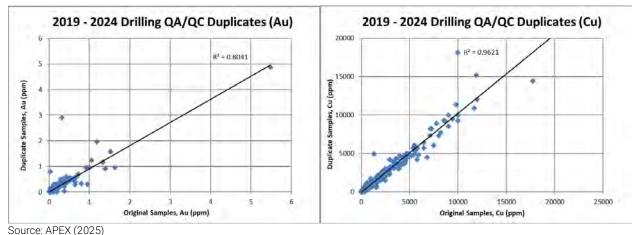
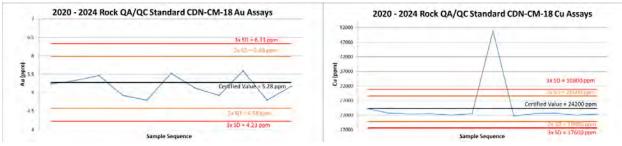



Figure 11.4 2019 to 2024 rock sampling QA/QC CDN-CM-18 standards

Source: APEX (2025)

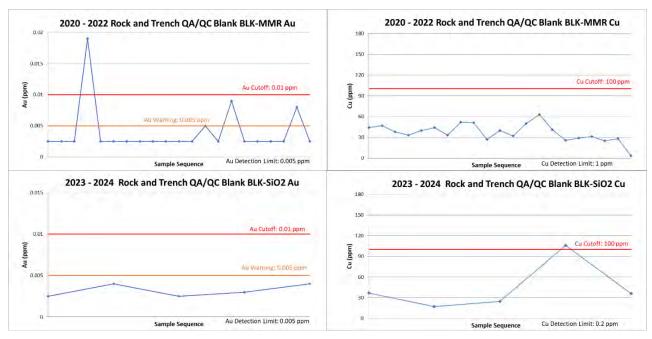
Standards

Standards included CDN-CM-37, CDN-ME-1409, CDN-CM-18, and CDN-ME-2314, as referenced by CDN Resource Laboratories Ltd. CDN-CM-18 and CDN-ME-2314 are classified as high-grade Cu-Au standards, while CDN-CM-37 and CDN-ME-1409 represent low-grade Cu-Au standards.

A total of 20 standards were inserted within rock sampling/trenching sequences. Results of gold and copper analyses for all standards are illustrated in Figure 11.4. CDN-CM-37, CDN-CM-1409 and CDN-CM-2314 reported assays for copper within the certified values (Table 11-3).

Table 11-3 2010 to 2024 QA/QC rock sampling other standards for gold and copper

Sample ID	CRM code	Value	Certified value	Standard deviation	2SD Low	2SD High	2SD	Analyte	Unit
222200	CDN-ME-1409	0.624	0.646	0.07	0.506	0.786	PASS LOW	Au	ppm
222200	CDN-ME-1409	2350	2420	100	2220	2620	PASS LOW	Cu	ppm
222150	CDN-CM-37	0.188	0.171	0.024	0.123	0.219	PASS HIGH	Au	ppm
222150	CDN-CM-37	2060	2120	120	1880	2360	PASS LOW	Cu	ppm
137150	CDN-CM-37	0.17	0.171	0.024	0.123	0.219	PASS LOW	Au	ppm
137150	CDN-CM-37	2170	2120	120	1880	2360	PASS HIGH	Cu	ppm
222317	CDN-ME-2314	4.14	4.23	0.31	3.61	4.85	PASS LOW	Au	ppm
222317	CDN-ME-2314	17150	17200	680	15840	18560	PASS LOW	Cu	ppm



Blanks

Blanks used in Kodiak's prospecting and trenching program were mountain magic red (MMR), and certified SiO_2 blanks. Mountain magic red are common decorative products consisting of volcanic scoria. A total of 34 blanks was inserted. The results of the gold and copper analyses for all blanks were illustrated in Figure 11.5.

Figure 11.5 2020 - 2022 rock and trench sampling QA/QC Blanks. Assays for copper and gold

Source: APEX (2025)

11.2.3.3 Soil Sampling QA/QC

For the 2019- to 2024 soil sampling programs, Kodiak established a QA/QC program utilizing quality control samples to monitor accuracy (i.e. sample standards), contamination (i.e. sample blanks), precision (i.e. duplicates) and other possible sampling errors (i.e. sample mislabelling).

The QA/QC protocol targeted an insertion rate of 10 per cent control samples. A quality control sample was inserted within every 10 consecutive samples, alternating between standard, blank or duplicate samples (1:2:2). The standard and blank samples were inserted into the sample sequence as the sample shipment was being readied. Any duplicate samples were inserted into the sample sequence at the time of collection. The quality control samples were similarly numbered as the primary samples and were not identified in any other manner.

A total of 924 QA/QC samples were submitted to the lab including 370 blanks, 175 standards and 379 duplicates (Table 11-4).

Standards

The standard for the soil sampling programs was CDN-GEO-1901, as referenced by CDN Resource Laboratories Ltd. Standards samples were provided in individual packages from CDN Resource Laboratories Ltd.

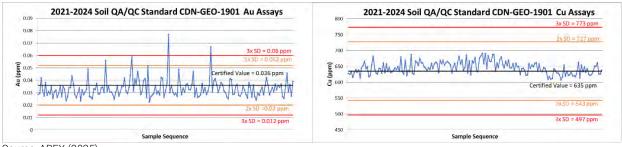

A total of 175 standards were inserted. The results of the gold and copper analyses for all standards are illustrated in Figure 11.6.

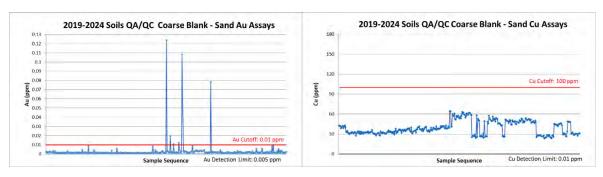
Table 11-4 2019 - 2024 soil sampling QA/QC insertion rates

Year	2019	2020	2021	2022	2023	2024	Total
Regular Sample	189	328	1,579	1,704	2,705	2,020	8,525
Coarse Sand Blank	3	8	71	76	121	91	370
CDN-GEO- 1901(Standard)	0	0	33	38	60	44	175
Duplicates	8	14	70	76	122	89	379
Total	200	350	1,753	1,894	3,008	2,244	9,449
Insertion Rates							
Blanks	1.50%	2.29%	4.05%	4.01%	4.02%	4.06%	3.92%
Standards	4.00%	4.00%	3.99%	4.01%	4.06%	3.97%	4.01%
Duplicates	0.00%	0.00%	1.88%	2.01%	1.99%	1.96%	1.85%
Total QAQC	5.50%	6.29%	9.93%	10.30%	10.07%	9.98%	9.78%

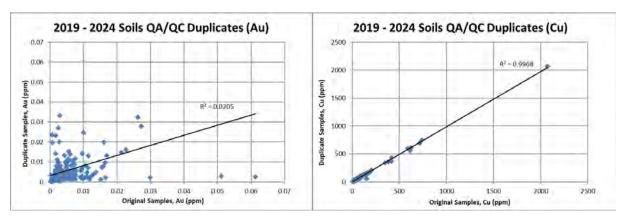
Source: APEX (2025)

Figure 11.6 2021 to 2024 soil sampling QA/QC CND-GEO-1901 standard

Source: APEX (2025)


Blanks

Field blanks were composed of a known benign aggregate source. A total of 370 blanks were inserted within soil sampling sequence. Results for gold and copper analyses for all blanks were illustrated in Figure 11.7.


Figure 11.7 2019-2024 soil sampling QA/QC coarse blank

Field Duplicates

A total of 379 soil duplicate samples is included in Kodiak's database. Results of the gold and copper analyses for all duplicates are illustrated in Figure 11.8. Results show a high degree of dispersion.

Figure 11.8 2019-2024 soil sampling QA/QC duplicates

Source: APEX (2025)

11.3 Adequacy of Sample Collection, Preparation, Security and Analytical Procedures

The historical drilling data, primarily conducted before adopting modern, industry-standard methods, understandably comes with limited sampling, security, analytical, and QA/QC procedures documentation. Despite this, a thorough review and assessment by the QP, as described in Section 14.1, has not identified any significant bias issues with the historical data in comparison to more modern data that is supported by more rigorous QA/QC procedures, supporting its reliability for use in resource estimation.

Based upon a review of Kodiak for the 2021-2024 sample collection, sample preparation, security, analytical procedures, and QA/QC procedures used at the MPD Property, it is the opinion of the Author and QP that they are appropriate for the type of mineralization that is being evaluated and the stage of the project. It is the Author's opinion that the MPD Property's drilling and assay data are appropriate for use in the resource modelling and estimation work discussed in Section 14. A robust QA/QC program depends on taking

proactive measures by investigating, addressing and recording actions associated with QA/QC fails and anomalies as demonstrated to date by Kodiak.

12 Data Verification

12.1 Data Verification Procedures

12.1.1 Drillhole Database

As described in detail in Section 10 of this report, drilling in the Project area dates back more than 50 years. Kodiak has generated a "Reliability Index" for holes based on various criteria including: source and type of survey information, reliability of assay data, etc. As a component of the MRE generation, an independent check of approximately 5% of the drill holes used for grade estimation at each deposit was completed by the QP. The data validation exercise consisted mainly of verifying assays against their source. Except for the four earliest holes at Man, the source checked was assay certificates in PDF format; the early Man holes were checked against copies of logs contained in assessment reports. Only very few, inconsequential discrepancies were found. Drill holes with a Reliability Index of 3 or greater were used in the MRE. All except 20 holes had the highest reliability index. In total, 43 holes were excluded from the MRE based on unreliable or unknown collar locations or sources of assay data. The author is satisfied that drill data used in the estimation of this mineral resource is suitable for that purpose.

12.1.2 Exploration Data

Data review completed by the Author included examining original source data such as original sample laboratory certificates and comparing this information against compiled digital datasets. Copies of excel compilations of drill logs and original assays were made available by Kodiak's team between May and June, 2025. In addition, historical maps and reports were reviewed to assess the accuracy of digital data.

In the opinion of the Author, the Property databases are adequate and suitable for use in this Report.

12.2 Qualified Person Site Inspection

The Property has been the subject of several historical exploration campaigns, and modern exploration carried out by Kodiak since 2021. The lead author of this Report, Mr. Alfonso L. Rodriguez, completed a site visit on May 5th 2022, on September 15th, *2022* and a more recent site inspection of the MPD Project on June 23 and 24th, 2025. The 2025 site visit included a review of the core storage and core processing facility located in Merrit, BC and a tour of the Property to verify historical exploration results, to confirm the geology and mineralization of the Property, and to collect verification samples from historical trenches, and other sampling sites. Drill hole locations were also visited, including reclaimed drill sites and proposed 2025 diamond drill site and reverse circulation drilling sites (Figures 12.1 and 12.2).

Mr. Rodriguez collected a total of 3 samples of quarter-core from selected drill hole intercepts, including 2 drill holes from the 2021 program and one historical drill hole from 2015. Additionally, 3 surface rock samples (grabs) were collected on the Property, including grabs from historical trenches (Figure 12.2, Table 12-1). Descriptions and geochemical results of all site visit samples are presented in Table 12-1. Rock grab verification samples yielded assays between 0.131% and 0.379% for copper and between 0.021 and 0.152 for gold. Drill hole verification samples yielded assays between 0.379 % and 1.53 % copper and between 0.019 g/t and 0.252 g/t gold.

Figure 12.1 2025 QP site visit sample locations

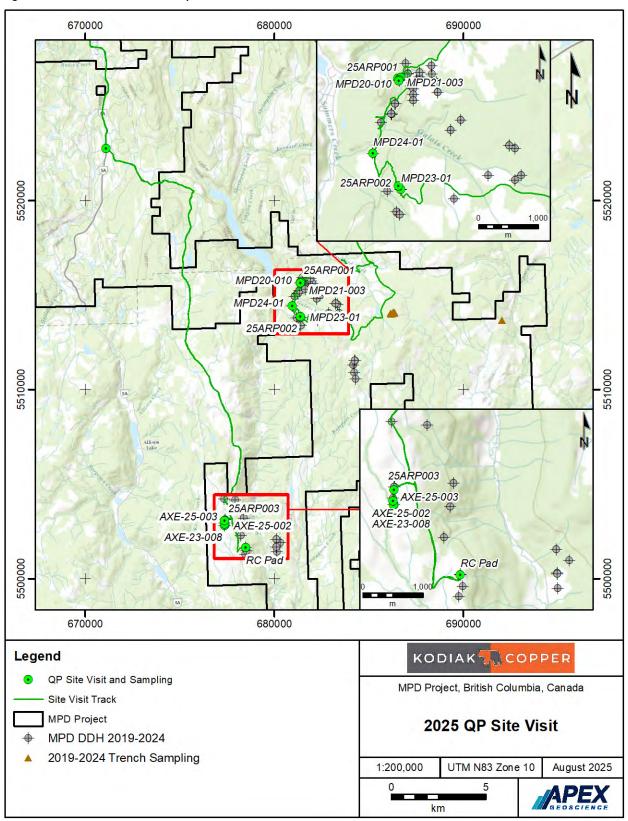


Figure 12.2 2025 QP site visit sample locations. A. Core processing facility (Merrit, BC). B. MPD23-001. C. MPD24-001 Drill site. D. Trench at Man zone, sample 25ARP002. E. Sample site 25ARP001, trench near drill hole MPD21-003. F. Core drilling site (Axe zone). G. Drill hole MPD21-016 at 602.50m. Center line quartz vein cross-cut by chalcopyrite veinlet. H. Drill hole MPD21-016 at 588.20 m. Chalcopyrite veinlets, part of sample 25ARM001. I. Drill hole MDP22-010 at 618.30 m. Potassic alteration.

Source: APEX (2025)

Table 12-1 2025 QP site visit sample locations, descriptions, and geochemical results

QP Sample ID	Location ID	Location Type	Easting NAD83z10	3	Altitude (m)	From (m)	To (m)	Туре	MPD Project Sample ID	Lithology	Cu % Company	Au ppm Company	Cu % QP	Au ppm QP	Description
25ARP001	Near drill hole MPD21- 003	Reclaimed trench	681,390	5,515,673	1,248			Grab - Composit	Historical	Volcanic - Andesite			0.131	0.021	Volcanic, andesite. Grab Composit from previous trench material. Potassic alteration. Magnetite veinlets cutting and overprinting porpylitic (chlorite epidote) alteration. Disseminated Chalcopyrire (0.5%). Moderate magnetism.
25ARP002	MAN	Trench	681,398	5,513,873	1,330			Grab - trench	Historical	Intrusive			0.379	0.135	Argillic alteration on intrusive. Malachite and azurite occurrence.
25ARP003	West Zone (AXE)	Trench	677,398	5,503,071	1,404			Grab - trench	Historical	Intrusive - Quartzdiorite			0.29	0.152	Quartzdiorite with Epidote fracture coatings and malachite fractre coatings, minor copper oxides. Chalcopyrite and pyrite scattered (traces)
25ARM001	MPD21- 016	Drill Hole (Gate)	683,347	5,513,970	1,450	588	591	Quarter- core	107806	Intrusive - Quartzmonzon ite	0.398	0.248	0.436	0.252	Quartzmonzonite. Chlorite/Sericite alteration. Quartz. Quartz+Pyrite+- magnetite with minor K-spar and hematite veinlets (Up to 3 mm veinlets).
25ARM002	MPD21- 035	Drill Hole (Dillard)	681,341	5,515,247	1,198	210.5	212	Quarter- core	148918	Intrusive - Diorite	0.371	0.166	1.53	0.019	Diorite chlorite/arigillic alteration. Quartz+pyrite and pyrite microveins. Disseminated pyrite.
25ARM003	K15-01	Drill Hole (Ketchan, historic)	676,011	5,516,924	1,322	30	32	Quarter- core	M458259	Intrusive - Monzonite	0.324	0.124	0.379	0.135	Pyrite up to 1% Monzonite. Propylitic alteration overprinting K-spar alteration. Epidote veinlets. Disseminated chacopyrite (0.3%)and scattered pyrite (0.1%). Strong magnetism.

Samples were collected, bagged, and sealed by the Author. The sealed samples were collected by personnel of Actlabs and delivered to the laboratory located in Kamloops, BC. Actlabs is a Standards Council of Canada ("SCC") accredited geo-analytical laboratory and is independent of Kodiak and the Authors of this Report. Samples were subjected to Actlabs' standard sample preparation and analytical practices. Samples were assayed for multielement geochemistry (including copper) by means of Actlabs method 8-4 Acid Total Digestion-Kamloops and UT-6M. The method combines the total digestion (HF, HClO4, HNO3 and HCl) with an inductively coupled plasma mass spectrometry (ICP-MS) finish. Copper exceeding the upper limit was additionally analyzed by 4-acid ICP OES.

12.3 Validation Limitations

Based on the results of the traverse and verification sampling, as well as a review of the historical and modern drill core, the author has no reason to doubt the reported exploration results. As all drill pads were reclaimed within a year of Kodiak's exploration programs, finding drill hole collars was challenging, however the evidence of reclamation and the ongoing drilling indicates veracity of drilling locations.

12.4 Adequacy of the Data

All drill hole verification samples presented here yielded higher grades than original samples. The QP is of the opinion that a slight variation in assays is expected due to the variable distribution of mineralization within a core section or at outcrop. The Author has no reason to doubt the results of this work, given the availability of original source data, including copies of drill logs and assay certificates.

Minor QA/QC failures were noted within the database associated with earlier programs (2019-2022). These were noted and addressed and follow up action was determined (as discussed in Section 11). These failures are not considered to impact the integrity of the drilling database. Any QA/QC fails in the drilling database should always be addressed prior to being considered within a MRE. In general, during the drilling program or as an immediate follow up upon reception of assays from laboratory, companies must review QA/QC and address any QA/QC anomalies (i.e. re-assay, resampling).

13 Mineral Processing and Metallurgical Testing

In the first half of 2025, an introductory metallurgical testwork program was conducted on the MPD Project. The testwork program focused primarily on recovery of gold, copper, and silver by the flotation process and was designed to determine how the material responds to flotation and what characteristics to focus on for future testwork campaigns.

Three samples were selected for the testwork program:

- MPD North High Grade;
- MPD North Low Grade; and
- MPD South.

The introductory metallurgical testwork program was conducted at Blue Coast Research (BCR) in Parksville BC. The program demonstrated a good response to flotation for a deposit that has a relatively fine-grained mineralogy.

13.1 Sample Selection

For the introductory metallurgical testwork program, three composites were selected to provide a cross section of the deposit. The initial discussions with Kodiak geologists indicated that the samples were generally similar in mineralogical characteristics. The samples were selected from a cross section of 6 identified zones of the MPD deposit: Gate, Man, Dillard, West, Adit and South.

The MPD North high grade and the MPD North Low Grade samples were sourced from the original MPD claim block and the MPD South sample was sourced from the Axe claim block. The 3 composites that were formed were designed to give a sample that was spatially different (covering both the original MPD claims and Axe claims) and also to provide a high and low grade sample to provide a range of feed grades in order to develop a grade vs. recovery relationship.

Prior to selecting these samples, a scoping study had been conducted by JDS to identify an initial cut-off grade and to develop conceptual (initial) pit shells. This scoping study was drawn on to provide an estimate of the mill feed grade. The core database was sorted to produce a sub-set that only included material that was located inside the preliminary conceptual pit shells. Figure 13.1 shows the preliminary conceptual pit shells on a map of the zone locations.

.5517500 N .5512500 N .5510000 N

Figure 13.1 Map of Preliminary Conceptual Pit Shells

Source: JDS (2025)

Table 13-1 identifies the average of the zone and the expected grades of the samples, based on the weighted average of the core assays.

Table 13-1 Sample Selection Estimated Grades

Composite	Au (g/t)	Ag (g/t)	Cu (%)	Stot (%)
MPD South Ore Zone				
MPD South Average	0.178	2.452	0.307	1.747
MPD South Composite	0.175	2.602	0.328	1.997
MPD North Ore Zone				
MPD North Average	0.146	1.068	0.285	1.596
MPD North High Grade Composite	0.442	2.624	0.453	2.274
MPD North Low Grade Composite	0.083	0.655	0.176	1.277

Source: JDS (2025)

13.2 Sample Characterization

Upon receipt of the samples at BCR, the intervals were inventoried and then stage crushed to 10 mesh (1.7 mm). The samples were then combined into the 3 composites and homogenized using a rotary splitter (split the sample and recombine 3 times). At this stage, triplicate 2 g sub-samples were collected from each composite for head assay and the remainder of the composites were split into 2 kg sub-samples. The assays from the three samples can be found in Table 13-2.

Table 13-2 Sample Composite Assayed Grades

Composite	Au (g/t)	Ag (g/t)	Cu (%)	Mo (ppm)	Fe (%)	Stot (%)	Cu l	Distributio	n (%)
Method	FA-ICP	4AD-ICP	4AD-ICP	4AD-ICP	4AD-ICP	ELTRA	Cu Sul Acid	Cu CN	Cu Residual
MPD North Low Grade	0.07	0.77	0.17	6	4.35	1.14	5.7	7.7	86.5
MPD North High Grade	0.42	2.77	0.42	18	4.92	2.26	3.4	6.9	89.7
MPD South	0.27	2.90	0.31	33	7.46	2.05	1.6	2.3	96.1

Source: Blue Coast Research (2025)

Other sub samples were ground to a P_{80} of 75 μ m and were then sent for mineralogy characterization using the TESCAN TIMA platform. The copper deportment was determined to be predominantly chalcopyrite as can be seen in Table 13-3.

Table 13-3 Copper Deportment

	Mass % of Copper in Phase												
Mineral List	MPD North High Grade	MPD North Low Grade	MPD South										
Chalcopyrite	92.8	92.0	99.5										
Bornite	5.6	4.5	0.1										
Chalcocite	1.1	2.8	0.1										
Other Cu minerals	0.5	0.7	0.4										
Others	0.0	0.0	0.0										
Total	100	100	100										

Source: Blue Coast Research (2025)

The copper mineral grain sized was measured during the mineralogy scan and was determined to have chalcopyrite grain sizes approximately 20 µm as seen in Table 13-4.

Table 13-4 Copper Mineral Grain Size

Product/P ₈₀	Chalcopyrite	Pyrite	Bornite
MPD North High Grade	20.0	34.0	14.8
MPD North Low Grade	21.1	40.7	17.3
MPD South	18.9	36.0	5.9

Source: Blue Coast Research (2025)

13.3 4 Flotation Testwork


The flotation testwork program consisted of a total of 24 individual rougher and cleaner tests on the 3 composite samples. Characteristics that were tested included size vs recovery and reagent vs recovery. For this round of testwork, it was decided to use two types of collectors, Potassium Amyl Xanthate (PAX) and Aero 3477.

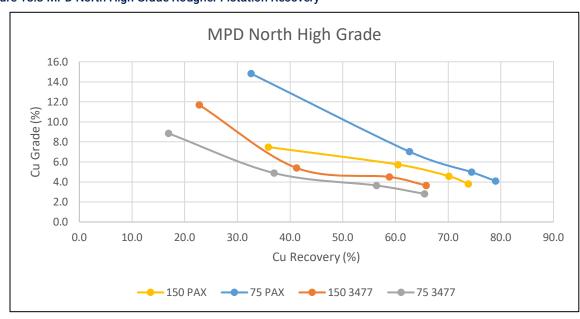

Each of the composite samples were subjected to rougher flotation testing to compare grind vs recovery and reagent vs recovery. Grind vs recovery compared 2 separate size fractions, P_{80} of 75 μ m and P_{80} of 150 μ m. Each grind size was tested using both PAX (18 g/t) and Aero 3477 (15 g/t). the copper grade vs copper recovery results can be seen in Figure 13.2, Figure 13.3, and Figure 13.4 for the MPD North Low Grade, MPD North High Grade, and MPD South samples respectively.

Figure 13.2 MPD North Low Grade Rougher Flotation Recovery

Source: Blue Coast Research (2025)

Figure 13.3 MPD North High Grade Rougher Flotation Recovery

Source: Blue Coast Research (2025)

MPD South 5.0 4.5 4.0 3.5 Grade (%) 3.0 2.5 2.0 3 1.5 1.0 0.5 0.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 Cu Recovery (%)

Figure 13.4 MPD South Rougher Flotation Recovery

Source: Blue Coast Research (2025)

The rougher flotation testwork focused on maximizing copper recovery. Gold is generally expected to follow either copper minerals or pyrite.

After the first round of rougher flotation tests, a selected rougher tailing from the MPD North High Grade sample was chosen to conduct a tailings analysis to understand copper losses. The results, as well as results from the three composite feeds, can be found in Table 13-5.

The rougher tailing mineralogy demonstrated that over half of the chalcopyrite in the sample was fully liberated and should have recovered easily (Bornite and Chalcocite were determined to be very low in the rougher tailings sample).

Table 13-5 Chalcopyrite Liberation Rougher Feed Samples and MPD North High Grade Tails

	Degree of Liberation - Chalcopyrite														
Free surface % of Chalcopyrite	<10	≥10<20	≥20<30	≥30<40	≥40<50	≥50<60	≥60<70	≥70<80	≥80<90	≥90	All Particles	Locked (<30)	Low Middlings (30-50)	High Middlings (50-80)	Liberated (>80)
MPD North High Grade	6.7	4.6	3.1	2.5	1.9	2.3	2.1	5.0	3.8	68.1	100.0	14.4	4.4	9.4	71.8
MPD North Low Grade	13.0	5.7	4.3	2.0	2.6	3.6	2.2	2.9	6.3	57.6	100.0	23.0	4.5	8.7	63.8
MPD South	4.4	2.7	3.1	2.4	2.1	2.1	3.0	2.9	5.9	71.4	100.0	10.1	4.5	8.0	77.3
F-6 Rotail	17.4	9.2	4.9	2.9	3.0	1.9	1.8	1.2	0.6	57.1	100.0	31.4	5.9	4.9	57.7

Source: Blue Coast Research (2025)

An additional rougher test was conducted on the MPD North High Grade sample with additional PAX to improve chalcopyrite recovery, demonstrating an additional 6% copper recovery. From this data, it was

decided to progress with cleaner flotation testing to produce a saleable copper concentrate and determine the flotation response in a cleaner circuit.

A total of 6 cleaner tests were conducted on the MPD North High Grade sample and 5 cleaner tests on the MPD South and MPD North Low Grade samples to achieve a saleable copper concentrate, although the cleaner circuit did not achieve expected stage recoveries.

The concentrates produced in the testwork were of good quality, returning copper grades of between 22% to 26.7% and gold assays between 6.2 g/t (low gold grade feed) to 16.9 g/t. Analysis of the concentrates also show that the concentrates have low concentrations of deleterious elements.

A summary of the results of the final flotation tests can be seen in Table 13-6.

Table 13-6 Sample Feed Grade, Rougher Recovery and Max Concentrate Grade

Sample	Feed Grade (Flotation Calculated			Rougher	Stage Rec	overies %	Max Concentrate Grade			
	Cu (%)	Au (g/t)	Ag (g/t)	Cu	Au	Ag	Cu (%)	Au (g/t)	Ag (g/t)	
MPD North High Grade	0.41	0.44	2.55	89.0	69.9	81.1	26.7	16.9	76.4	
MPD North Low Grade	0.16	0.09	1.00	82.3	59.7	54.8	22.0	6.2	41.3	
MPD South	0.35	0.28	3.35	89.9	74.1	76.0	22.2	11.5	94.1	

Source: JDS (2025)

Five samples from the final cleaner tailings tests were con tailings from the three composite samples cleaner tailings to understand the reason for the losses. The losses for copper were, as expected, primarily chalcopyrite, as can be seen in Table 13-7. A significant amount of the chalcopyrite in the tailings is highly liberated as seen in Table 13-8.

Table 13-7 Mineral Deportment of Selected Cleaner Tailings Streams

Mass % of Copper in Phase									
Mineral List	MPD North High Grade Clnr 1 Scav Tail	MPD North High Grade Clnr 2 Tail	MPD South Clnr 1 Scav Tail	MPD North Low Grade Clnr 1 Scav Tail	F-24 Clnr 2 Tail				
Chalcopyrite	96.8	90.7	99.3	95.2	90.2				
Bornite	2.9	8.6	0.4	3.0	5.2				
Chalcocite	0.3	0.6	0.1	1.6	4.4				
Enargite	0.0	0.0	0.0	0.0	0.0				
Covellite	0.0	0.0	0.0	0.0	0.0				
Other Cu minerals	0.1	0.1	0.3	0.2	0.1				
Total	100	100	100	100	100				

Source: Blue Coast Research (2025)

Table 13-8 Chalcopyrite Liberation for Selected Cleaner Tailings Streams

Degree of Liberation - Chalcopyrite															
Free surface % of Chalcopyrite	<10	≥10<20	≥20<30	≥30<40	≥40<50	≥50<60	≥60<70	≥70<80	≥80<90	≥90	All particles	Locked (<30)	Low Middlings (30-50)	High Middlings (50-80)	Liberated (>80)
F-19 Clnr 1 Scav Tail	2.2	4.7	5.6	4.4	4.7	4.9	5.1	4.0	2.9	61.6	100.0	12.5	9.1	14.0	64.5
F-19 Clnr 2 Tail	0.6	1.8	2.8	3.0	2.8	4.6	5.3	5.1	5.4	68.7	100.0	5.2	5.7	15.0	74.1
F-22 Clnr 1 Scav Tail	1.4	3.8	4.5	3.9	3.6	5.2	5.3	4.2	3.9	64.3	100.0	9.7	7.5	14.7	68.2
F-24 Clnr 1 Scav Tail	3.4	5.9	5.6	5.4	4.1	5.5	4.6	4.2	4.7	56.6	100.0	14.9	9.4	14.4	61.3
F-24 Clnr 2 Tail	1.3	2.6	3.8	3.5	3.3	4.9	5.4	4.9	5.1	65.3	100.0	7.7	6.8	15.2	70.3

Source: Blue Coast Research (2025)

It is expected, based on the findings of the mineralogy conducted, that further improvements to stage recoveries can be achieved by optimizing the final grind size and reagent dosages to ensure that there is a high recovery of liberated chalcopyrite in the cleaner circuit. The mineralogy conducted has identified that pyrite appears to be competing for reagents, which is not unexpected using PAX as a collector.

13.4 Recommendations

The testwork completed demonstrates good recovery potential from the MPD deposit. Future testwork programs should build on the findings from this testwork program. The opportunities to improve recovery have been outlined for both the rougher and cleaner circuits.

13.4.1 Rougher Recovery

There were several opportunities identified to improve recoveries in the rougher circuit. It was identified that the mineral grain size is very small, requiring a fine grind (75 μ m). It was also found that pyrite appears to have been consuming reagent, requiring higher reagent dosages. Further work should identify opportunities to coarsen up the grind size and improve reagent dosage and selectivity.

Another opportunity to improve gold (and possibly silver) recovery is to investigate the prevalence of free leachable gold in that is being recovered to the pyrite concentrate.

The following items are recommended for further study:

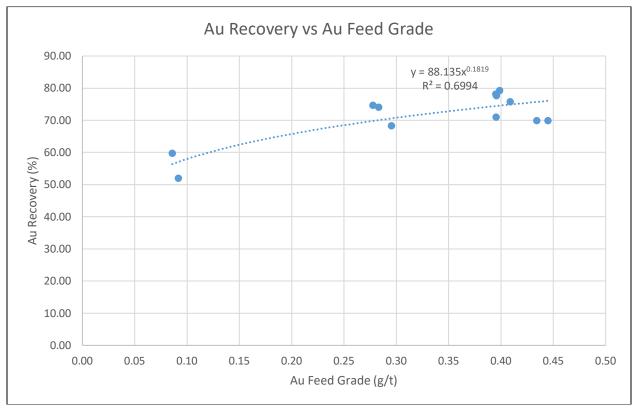
- Coarse particle flotation;
- Reagent addition:
 - Reagent type; and
 - Dosage rate.
- Pyrite Selectivity; and
- Cyanide leaching of pyrite concentrates.

13.4.2 Cleaner Recovery

The opportunities identified in the cleaner circuit are to further investigate the optimal regrind size target, potentially incorporating a staged grinding and recovery circuit to prevent overgrinding liberated chalcopyrite. Additionally, optimal reagent dosages should be investigated to improve the cleaner circuit stage recoveries. The following items are recommended for further study:

- Optimization of regrind size;
- Investigate the benefits of staged regrind and recovery flowsheets;
- Reagent addition:

- o Reagent type; and
- o Dosage rate.

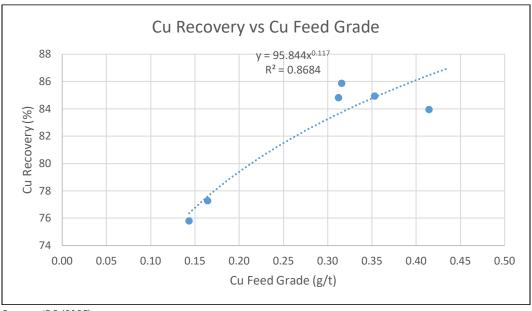

13.5 Metallurgical Assumptions

The testwork program was intended to be an introductory program and therefore the results do not reflect the final expected concentrate grades and recoveries. As such, some assumptions have been made in order to provide an expected recovery. The following assumptions have been made:

- 1. MPD North High Grade, MPD North Low Grade, and MPD South appear to demonstrate similar results with the only significant modifier being related to feed grade; and
- 2. The total cleaner flotation stage recoveries are assumed to be 95%; a value that is consistent with other porphyry copper deposits.

Figures 13.5 to 13.7 show the rougher recovery results for Gold, Copper, and Silver respectively, discounted by 5% to predict a final cleaner recoveries. These values were used to generate feed grade vs recovery relationships for each of the metals.

Figure 13.5 Gold Recovery Prediction vs Feed Grade



Source: JDS (2025)

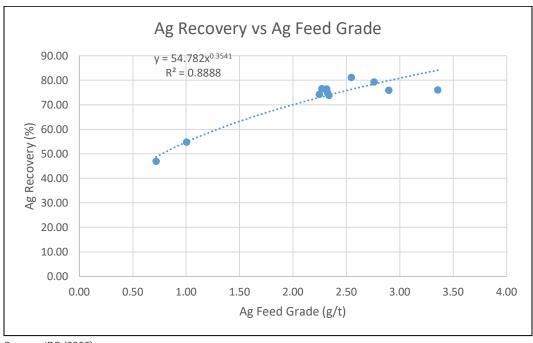


Figure 13.6 Copper Recovery Prediction vs Feed Grade

Source: JDS (2025)

Figure 13.7 Silver Recovery Prediction vs Feed Grade

Source: JDS (2025)

The recoveries and concentrate grade assumptions used in the testing can be found in Table 13-9.

Table 13-9 Table of Predictions Used

Parameter	Unit	Value	Recovery Formula
Process Feed Grade			
Cu	%	0.22	
Au	%	0.10	
Ag	%	0.83	
Process Recovery			
Cu Recovery	%	80	Rec Cu = 95.844*(Cu Feed Grade^0.117)
Au Recovery	%	58	Rec Au = 88.135*(Au Feed Grade^0.1819)
Ag Recovery	%	51	Rec Ag = 54.782*(Ag Feed Grade^0.3541)
Concentrate Grade			
Cu	%	22	
Au	g/t	7	
Ag	g/t	53	

Source: JDS (2025)

14 Mineral Resource Estimates

This Mineral Resource Estimate (MRE) is the initial resource for Kodiak's MPD Project consisting of four deposits: Gate, Man, Dillard and Ketchan. Copper, gold and silver grades have been estimated for the four project areas. Estimation control was based on geological models completed by Kodiak personnel. Alteration was used as control at Gate and Man; lithology was used to control grade estimation at Dillard and Ketchan.

This MRE was completed by James Gray (P. Geo) of Advantage Geoservices Ltd (section 14 QP) using Geovia GEMS® software and industry standard techniques. The resource has been classified in accordance with the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Definition Standards for Mineral Resources and Mineral Reserves (CIM, 2014).

14.1 Available Drill Data

As described in detail in Section 10 of this report, drilling in the Project area dates back more than 50 years. Kodiak has generated a "Reliability Index" for holes based on various criteria including: source and type of survey information, reliability of assay data, etc. As a component of the MRE generation, an independent check of approximately 5% of the drill holes used for grade estimation at each deposit was completed by the QP. The data validation exercise consisted mainly of verifying assays against their source. Except for the four earliest holes at Man, the source checked against was assay certificates in PDF format; the early Man holes were checked against copies of logs contained in assessment reports. Only very few, inconsequential discrepancies were found. Drill holes with a Reliability Index of 3 or greater were used in the MRE. The author is satisfied that drill data used in the estimation of this mineral resource is suitable for that purpose.

Table 14-1 provides details of drill holes used in the estimation of this resource. All except 20 holes had the highest reliability index. In total, 43 holes were excluded from the MRE based on unreliable or unknown collar locations or sources of assay data.

Table 14-2 lists drill metreage by year for composite data used in the generation of this MRE. The vast majority of drilling has been within the last twenty years. The colour bar adjacent to the years in the table corresponds to the colour of drillholes in Figure 14.1.

Table 14-1 Drill Data Used for Mineral Resource Estimate: Reliability Index

Reliability	Description		Number of Holes						
Index	Description	Gate	Man	Dillard	Ketchan				
3	Reliable coordinates; assays from strip logs; AR			4					
4	Reliable coordinates; assay certificates; AR; RC					16			
5	Reliable coordinates; assay certificates; AR		70	43	35	41			
		Total:	70	47	35	57			

AR = assessment report

Source: Advantage Geoservices (2025)

Table 14-2 Drill Data Used for Mineral Resource Estimate: Drill Year

Vasu		Number of: H	loles / Metres	
Year -	Gate	Man	Dillard	Ketchan
1981		4 / 654		
1988		3 / 548		
1989		5 / 863		
1991			11 / 1,817	8 / 577
1992				8 / 598
2005				9 / 863
2006				2 / 459
2007	4 / 619	15 / 3,066		4 / 607
2008		8 / 1,285		
2013	2 / 1,268		4 / 1,515	
2014			7 / 2,924	
2015				17 / 5,910
2016				9 / 3,958
2019	2 / 1,400	1 / 271		
2020	9 / 6,081			
2021	30 / 18,569		2 / 1,479	
2022	20 / 14,326		11 / 6,518	
2023		10 / 6,000		
2024	3 / 1,209	1 / 416		
Total:	70 / 43,472	47 / 13,103	35 / 14,253	57 / 12,972

Colour bar refers to drill trace colour in Figure 14.1

Source: Advantage Geoservices (2025)

Scale: metres

0 500 1,000

Figure 14.1 Available Drilling and Limits of Resource Models

Source: Advantage Geoservices (2025)

14.2 Block Model Setups

Grades in the four project areas were estimated using separate block model frameworks as listed in Table 14-3. A block size of $10 \text{ m} \times 10 \text{ m} \times 10 \text{ m}$ was selected as most appropriate based on likely production rate as well as current drill spacing. A fifth block model grid, combining Gate, Man and Dillard, was used for pit optimization (see Figure 14.1). Resource pit crests are shown in brown in the figure.

Table 14-3 Block Model Setup Summary

Project Area	Block Model:	X	Υ	Z
GATE	origin ⁽¹⁾	680,800	5,514,400	1,600
	size (m)	10	10	10
	no.blocks	170	180	150
	no rotation; 4,590,000 l	blocks		
MAN	origin ⁽¹⁾	680,800	5,513,200	1,600
	size (m)	10	10	10
	no.blocks	170	120	150
	no rotation; 3,060,000 l	blocks		
DILLARD	origin ⁽¹⁾	682,500	5,513,600	1,600
	size (m)	10	10	10
	no.blocks	150	160	150
	no rotation; 3,600,000 l	blocks		
KETCHAN	origin ⁽¹⁾	675,350	5,515,850	1,600
	size (m)	10	10	10
	no.blocks	215	213	150
	no rotation; 6,869,250 l	blocks		
GROUPED:	origin ⁽¹⁾	680,100	5,513,000	1,600
Gate, Man, Dillard	size (m)	10	10	10
	no.blocks	420	360	150
	no rotation; 22,680,000	blocks		

⁽¹⁾ SW model top, block edge

14.3 Geologic Models

Kodiak personnel prepared three-dimensional geological models using Micromine software from available data including drill hole logs, geochemical analyses, geophysical data and historical geology maps and assessment reports. Models of interpreted alteration and lithology were created and used to tag assay intervals for exploratory data analysis. Assay statistics based on these models resulted in the selection of the appropriate geologic control for grade estimation. Alteration models were used for estimation control at Gate and Man, and lithologic control was applied in the estimation of Dillard and Ketchan grades. Where appropriate, structural features were also integrated into the geological models. Estimation units and their assigned integer codes are list in various tables below.

Alteration models at the Gate and Man areas displayed typical porphyry style zonation: in general, a potassic altered core surrounded by phyllic and peripheral propylitic zones. At Gate, mineralization is predominantly associated with potassic alteration. Morphology of the resource is significantly influenced by a northeast-southwest trending, steeply dipping post mineral reactivated dextral fault. Alteration domains and resource block models at Gate were constructed separately for each fault block

At Dillard, six lithological solids were used to control the grade estimation, including five intrusive diorite units and an andesite host rock. These lithological domains were defined based on geological logging and geochemical interpretation.

At the Ketchan zone, control for grade estimation was based on four potentially mineralized lithology solids: three intrusive (K1-3 below) and one volcanic breccia (P Vol). These solids were influenced by two modelled faults and the grade statistics were done separately for each fault block. Additionally, two modeled volcaniclastic units and a post-mineral dyke were used to constrain mineralization.

Overburden surfaces, covering the combined Gate, Man, Dillard and the Ketchan areas, were generated based on a 2D interpolation of overburden depth from drill logs and outcrop occurrences. The depth was subtracted from the surface elevation at each X-Y block location to create a top of bedrock / bottom of overburden triangulated surface.

14.4 Assay Capping

Grade capping was used to control the impact of extreme, outlier high-grade samples on the overall resource estimate. Capping levels were selected for Cu, Au and Ag at the four deposits based on review of population statistics, probability plots and histograms. Selected capping levels are listed in Table 14.4; assay statistics are presented in Table 14-5 to Table 14-8.

The distributions of copper assays are quite continuous at the four project areas, as illustrated by low CV values (coefficient of variation=standard deviation \div mean) listed in tables below. Capping was applied only to limit very few outlier copper assays.

Precious metals (gold and silver) grade distributions are typically more erratic and require the control of upper assays limits prior of resource estimation. The tables below list the number of assays capped and the impact on average grade – per metal, per project area.

Table 14-4 Assay Capping Levels

Delicat Acces		Escardo de N	Cu	Au	Ag
Project Area		Estimation Unit	(%)	(g/t)	(g/t)
Gate	151	Potassic-North	4	2	
	152, 153	Non Potassic-North		0.7	10
	251	Potassic-South		2	
	252, 253	Non Potassic-South		0.7	10
Man	141	FeOx		0.8	10
	151	Potassic	2.1	4	10
	152	Phyllic		0.8	10
	153	Inner Propylitic	0.2		10
	253	Outer Propylitic	1.3	2	10
Dillard	2101	Low Grade-North			
	2102	Mineralized-North	1	0.4	
	2201	Low Grade-South			
	2202	Mineralized-South			2
	2300	Low Grade-Deep			0.7
	2400	Andesite		1.5	3
Ketchan	2101	K1_1		0.26	
	2102	K1_2		2	
	2201	K2_1		0.04	
	2202	K2_2	1.7	1.6	16
	2203	K2_3		1	10
	2300	K3		0.05	2
	2400	Pvol_1		0.2	1.7
	2500	Pvol_2-1			
	2600	Pvol_2-2			
uncapped					

-- uncapped

Table 14-5 Gate Deposit - Uncapped and Capped Assay Statistics

Г.	timation I hit	Sampled	Intervals		Cu (%)		CuCap (%)				
E:	timation Unit	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV	
151	Potassic-North	4,147	11,798	0.22	7.48	1.4	3	0.22	4.00	1.2	
152, 153	Non-potassic-North	1,390	4,054	0.03	0.97	2.0	0	0.03	0.97	2.0	
251	Potassic-South	4,593	13,371	0.15	3.06	1.2	0	0.15	3.06	1.2	
252, 253	Non-potassic-South	4,647	13,805	0.03	0.78	1.5	0	0.03	0.78	1.5	
	Total / Mean:	14,777	43,028	0.12			3	0.12			

Ec	stimation Unit	Sampled	Intervals		Au (g/t)		AuCap (g/t)				
<u> </u>	Surration Onit	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV	
151	Potassic-North	4,147	11,798	0.10	9.62	2.6	5	0.10	2.00	1.9	
152, 153	Non-potassic-North	1,390	4,054	0.03	3.03	4.0	3	0.02	0.70	2.4	
251	Potassic-South	4,593	13,371	0.08	8.36	2.5	5	0.07	2.00	1.8	
252, 253	Non-potassic-South	4,647	13,805	0.03	4.99	3.6	13	0.03	0.70	1.9	
	Total / Mean:	14,777	43,028	0.06			26	0.06			

E	stimation Unit	Sampled	Intervals		Ag (g/t)		AgCap (g/t)				
	surration onit	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV	
151	Potassic-North	3,961	11,270	0.86	45.10	1.6	0	0.86	45.10	1.6	
152, 153	Non-potassic-North	1,338	3,901	0.27	12.55	1.6	1	0.26	10.00	1.4	
251	Potassic-South	4,446	12,969	0.63	21.60	1.6	0	0.63	21.60	1.6	
252, 253	Non-potassic-South	4,020	11,942	0.34	53.30	2.8	2	0.32	10.00	1.3	
	Total / Mean:	13,765	40,083	0.58			3	0.57			

The impact of grade capping can be measured by comparing uncapped and capped estimated grades above a zero cut-off. At Gate, metal removed by the capping process amounts to: 0% Cu, 6% Au and 0% Ag (Table 14-5).

Table 14-6 Man Deposit - Uncapped and Capped Assay Statistics

	Estimation Unit	Sampled	Intervals		Cu (%)		CuCap (%)				
	esumation unit	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV	
141	Fe/Ox	349	736	0.06	0.62	1.5	0	0.06	0.62	1.5	
151	Potassic	1,678	3,760	0.13	5.78	2.1	2	0.12	2.10	1.7	
152	Phyllic	895	2,369	0.05	0.93	1.7	0	0.05	0.93	1.7	
153	Inner Propylitic	221	580	0.05	0.43	1.3	4	0.04	0.20	1.1	
253	Outer Propylitic	1,035	2,530	0.05	2.75	2.7	2	0.05	1.30	2.0	
	Total / Mean:	4,178	9,976	0.08			8	0.08			

	Estimation Unit	Sampled	Intervals		Au (g/t)		AuCap (g/t)				
Į.	-surration onli	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV	
141	Fe/Ox	337	712	0.04	1.66	3.0	1	0.04	0.80	2.5	
151	Potassic	1,535	3,473	0.21	9.21	2.6	5	0.20	4.00	2.2	
152	Phyllic	895	2,369	0.06	1.74	2.4	5	0.06	0.80	2.1	
153	Inner Propylitic	221	580	0.08	0.95	1.8	0	0.08	0.95	1.8	
253	Outer Propylitic	1,024	2,508	0.10	5.99	3.2	3	0.09	2.00	2.4	
	Total / Mean:	4,012	9,643	0.13			14	0.12			

	Estimation Unit	Sampled	Intervals		Ag (g/t)		AgCap (g/t)				
Į.	-surration onit	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV	
141	Fe/Ox	346	727	0.39	6.20	1.7	0	0.39	6.20	1.7	
151	Potassic	1,641	3,649	0.52	31.70	2.5	5	0.50	10.00	1.8	
152	Phyllic	894	2,365	0.72	194.00	12.2	2	0.33	10.00	2.3	
153	Inner Propylitic	221	580	0.37	3.88	1.3	0	0.37	3.88	1.3	
253	Outer Propylitic	1,006	2,443	0.45	82.50	6.0	2	0.37	10.00	2.1	
	Total / Mean:	4,108	9,764	0.53			9	0.41			

Metal removed by capping at Man amounts to: 0% Cu, 0% Au and 32% Ag. The high impact of capping silver grades illustrates the fact that the silver assay population is markedly skewed. The capping of only 9, of 4,100, assays in six holes, at a value well above the 99th percentile of silver grades, has had this large impact. The average uncapped grade of these nine samples is 63.1 g/t Ag (Table 14-6).

This also suggests that the higher silver grades could be investigated geologically to try to understand their setting with the goal of modifying the geologic interpretation such that better domaining would isolate high-grade Ag units and allow the capping level to be increased.

Table 14-7 Dillard Deposit - Uncapped and Capped Assay Statistics

_	stimation Unit	Sampled	Intervals		Cu (%)			CuCa _l	o (%)	
	Surration Unit	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV
2101	Int5 LG-North	237	690	0.03	0.24	1.3	0	0.03	0.24	1.3
2102	Int1 MIN-North	244	712	0.11	2.02	1.5	1	0.10	1.00	1.1
2201	Int4 LG-South	111	332	0.01	0.07	1.1	0	0.01	0.07	1.1
2202	Int2 MIN-South	768	2,160	0.17	1.19	0.7	1	0.17	1.00	0.7
2300	Int3 LG Deep	157	465	0.03	0.18	1.1	0	0.03	0.18	1.1
2400	Andesite	3,393	9,707	0.07	0.71	1.0	0	0.07	0.71	1.0
	Total / Mean:	4,910	14,065	0.08			2	0.08		

_	stimation Unit	Sampled	Intervals	Au (g/t)			AuCap (g/t)				
	Stillation onl	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV	
2101	Int5 LG-North	237	690	0.02	0.38	1.5	0	0.02	0.38	1.5	
2102	Int1 MIN-North	244	712	0.04	1.19	1.9	1	0.04	0.40	1.1	
2201	Int4 LG-South	111	332	0.02	0.14	1.5	0	0.02	0.14	1.5	
2202	Int2 MIN-South	768	2,160	0.09	0.62	0.7	0	0.09	0.62	0.7	
2300	Int3 LG Deep	157	465	0.06	0.71	1.3	0	0.06	0.71	1.3	
2400	Andesite	3,393	9,707	0.05	5.25	2.7	2	0.04	1.50	1.8	
	Total / Mean:	4,910	14,065	0.05			3	0.05			

	Estimation Unit	Sampled	Intervals		Ag (g/t)		AgCap (g/t)				
	ESTIMATION ONL	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV	
2101	Int5 LG-North	198	580	0.14	0.81	0.9	0	0.14	0.81	0.9	
2102	Int1 MIN-North	230	668	0.31	5.15	1.4	0	0.31	5.15	1.4	
2201	Int4 LG-South	111	332	0.09	0.25	0.6	0	0.09	0.25	0.6	
2202	Int2 MIN-South	606	1,722	0.45	23.70	3.1	5	0.37	2.00	0.8	
2300	Int3 LG Deep	157	465	0.16	2.05	1.2	1	0.15	0.70	0.9	
2400	Andesite	3,027	8,662	0.31	46.30	3.7	16	0.27	3.00	1.1	
	Total / Mean:	4,329	12,430	0.31			22	0.27			

Grade capping at Dillard has had the effect of removing 0% Cu, 2% Au and 9% Ag metal. These levels are quite average for this deposit type (Table 14-7).

Table 14-8 Ketchan Deposit - Uncapped and Capped Assay Statistics

	Estimation Unit	Sampled	Intervals		Au (g/t)		AuCap (g/t)			
	Surration onli	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV
2101	K1_1	232	465	0.04	1.13	2.4	2	0.03	0.26	1.4
2102	K1_2	2,856	6,057	0.07	3.12	2.0	0	0.07	3.12	2.0
2201	K2_1	47	99	0.03	0.70	4.0	1	0.01	0.04	0.7
2202	K2_2	756	1,523	0.08	3.50	2.5	2	0.08	1.60	2.2
2203	K2_3	911	2,021	0.06	1.96	2.1	3	0.06	1.00	1.8
2300	K3	299	603	0.01	0.36	2.1	6	0.01	0.05	1.1
2400	P Volcanics 1	97	194	0.03	0.61	2.9	2	0.02	0.20	1.8
2600	P Volcanics 3	275	667	0.05	0.32	1.1	0	0.05	0.32	1.1
	Total / Mean:	5,473	11,628	0.06			16	0.06		

	stimation Unit	Sampled	Intervals		Ag (g/t)			AgCa	p (g/t)	
	Surration onli	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV
2101	K1_1	232	465	0.34	2.10	1.0	0	0.34	2.10	1.0
2102	K1_2	2,613	5,320	0.65	12.80	1.2	0	0.65	12.80	1.2
2201	K2_1	47	99	0.89	2.10	0.6	0	0.89	2.10	0.6
2202	K2_2	756	1,523	1.22	65.60	3.8	9	0.98	16.00	2.4
2203	K2_3	839	1,810	0.92	100.00	4.0	3	0.79	10.00	1.4
2300	K3	299	603	0.35	2.80	1.2	3	0.34	2.00	1.1
2400	P Volcanics 1	97	194	0.54	7.50	2.1	4	0.38	1.70	1.1
2600	P Volcanics 3	166	327	0.53	2.20	8.0	0	0.53	2.20	0.8
	Total / Mean:	5,049	10,340	0.74			19	0.68		

	stimation Unit	Sampled	Intervals		Cu (%)			CuCa	o (%)	
	Surration onli	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV
2101	K1_1	232	465	0.05	0.46	1.5	0	0.05	0.46	1.5
2102	K1_2	2,857	6,060	0.12	2.07	1.5	0	0.12	2.07	1.5
2201	K2_1	47	99	0.02	0.07	0.7	0	0.02	0.07	0.7
2202	K2_2	756	1,523	0.09	3.21	2.7	4	0.08	1.70	2.2
2203	K2_3	911	2,021	0.12	2.05	1.9	0	0.12	2.05	1.9
2300	K3	299	603	0.01	0.27	2.1	0	0.01	0.27	2.1
2400	P Volcanics 1	97	194	0.02	0.12	0.7	0	0.02	0.12	0.7
2600	P Volcanics 3	275	667	0.15	0.67	0.9	0	0.15	0.67	0.9
	Total / Mean:	5,474	11,631	0.11			4	0.11		

At Ketchan, the metal removed through capping amounts to: 0% Cu, 2% Au and 12% Ag. These values are again typical of porphyry deposits (Table 14-8).

14.5 Assay Compositing

Capped and uncapped assays were composited to a target length of 3 m downhole. A composite length of three metres was chosen since 62% of all assays were sampled at that length; only 3% of assay intervals are longer than three metres.

Sampling in modern drill campaigns typically includes entire holes – that is, there in a complete record of grades over entire hole lengths. During early exploration, in the 1980's and 90's in this case, it was common for holes to be selectively sampled based on visual assessment of core mineralization. Compositing over resultant unsampled intervals can lead to positive bias if missing intervals are ignored and negative bias if all missing intervals were assumed to be unmineralized – which may not always be the case. For this MRE, holes with incomplete sampling were individually reviewed and a table was maintained to control the limits of composite generation for each metal in each hole.

Compositing to a constant length can result in the generation of shorter-length intervals at the ends of holes or compositing limits. Less than half-length (1.5 m in this case) composites are commonly discarded prior to grade estimation. For this estimate, downhole composite lengths were calculated such that they were equal per hole, and as close to three metres as possible. This technique resulted in composite lengths ranging between 2.75 and 3.08 m and, most importantly, includes all sampled material. Capped and uncapped composite statistics are presented in Table 14-9 to Table 14-12. Missing assays were replaced with very low, non-zero, values in the composite grade calculation process. Those default values were: 0.001% Cu, 0.001 g/t Au, 0.001 g/t Ag.

Table 14-9 Gate Deposit - Uncapped and Capped Composite Statistics

Г	stimation I hait	Composit	e Intervals		Cu (%)			CuCa	p (%)	
E:	stimation Unit	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV
151	Potassic-North	3,932	11,792	0.22	4.15	1.2	5	0.22	2.70	1.1
152, 153	Non-potassic-North	1,353	4,057	0.03	0.86	1.9	0	0.03	0.86	1.9
251	Potassic-South	4,455	13,358	0.15	1.89	1.1	0	0.15	1.89	1.1
252, 253	Non-potassic-South	4,757	14,264	0.03	0.66	1.4	0	0.03	0.66	1.4
	Total / Mean:	14,497	43,471	0.12			5	0.12		

Го	stimation Unit	Composit	e Intervals		Au (g/t)		AuCap (g/t)					
E	surration Unit	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV		
151	Potassic-North	3,932	11,792	0.10	6.56	2.2	9	0.10	1.83	1.8		
152, 153	Non-potassic-North	1,353	4,057	0.03	2.71	3.7	5	0.02	0.68	2.2		
251	Potassic-South	4,455	13,358	0.07	7.81	2.3	8	0.07	1.89	1.6		
252, 253	Non-potassic-South	4,757	14,264	0.03	2.72	2.7	21	0.03	0.70	1.7		
	Total / Mean:	14,497	43,471	0.06			43	0.06				

E	stimation Unit	Composit	e Intervals		Ag (g/t)			AgCa	p (g/t)	
	Surration Onit	Count	Metres	mean	max	CV	#Cap'd	Cap'd mean max		
151	Potassic-North	3,770	11,306	0.85	25.79	1.3	0	0.85	25.79	1.3
152, 153	Non-potassic-North	1,337	4,009	0.26	11.26	1.4	2	0.26	9.01	1.3
251	Potassic-South	4,373	13,113	0.61	17.12	1.2	0	0.61	17.12	1.2
252, 253	Non-potassic-South	4,594	13,775	0.31	10.07	1.2	3	0.31	8.66	1.1
	Total / Mean:	14,074	42,203	0.54			5	0.54		

Table 14-10 Man Deposit - Uncapped and Capped Composite Statistics

	Tatimation I lait	Composit	e Intervals		Cu (%)			CuCa	p (%)	
	Estimation Unit	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV
141	Fe/Ox	256	769	0.06	0.57	1.5	0	0.06	0.57	1.5
151	Potassic	1,408	4,223	0.10	2.95	1.6	2	0.10	1.72	1.5
152	Phyllic	938	2,816	0.04	0.55	1.7	0	0.04	0.55	1.7
153	Inner Propylitic	244	732	0.04	0.34	1.3	6	0.04	0.19	1.2
253	Outer Propylitic	1,520	4,563	0.04	3.20	3.1	2	0.04	1.32	2.2
	Total / Mean:	4,366	13,103	0.06			10	0.06		

	Estimation Unit	Composit	e Intervals		Au (g/t)			AuCa	o (g/t)	
٠	sumation unit	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV
141	Fe/Ox	247	747	0.04	1.53	3.0	2	0.04	0.74	2.3
151	Potassic	1,280	3,864	0.17	4.57	2.0	8	0.16	2.87	1.9
152	Phyllic	928	2,791	0.05	0.84	2.1	5	0.05	0.80	2.0
153	Inner Propylitic	247	745	0.06	0.95	1.8	0	0.06	0.95	1.8
253	Outer Propylitic	1,486	4,474	0.06	3.84	2.9	5	0.06	1.83	2.3
	Total / Mean:	4,188	12,621	0.09			20	0.08		

	Estimation Unit	Composit	e Intervals		Ag (g/t)			AgCa	p (g/t)	
	Esumation Unit	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV
141	Fe/Ox	244	738	0.40	3.60	1.3	0	0.40	3.60	1.3
151	Potassic	1,293	3,903	0.42	11.62	1.6	7	0.41	6.86	1.4
152	Phyllic	931	2,799	0.50	185.03	12.6	3	0.25	10.00	2.1
153	Inner Propylitic	247	745	0.29	3.88	1.5	0	0.29	3.88	1.5
253	Outer Propylitic	1,417	4,264	0.30	12.23	2.2	4	0.29	6.55	1.7
	Total / Mean:	4,132	12,450	0.39			14	0.32		

Table 14-11 Dillard Deposit - Uncapped and Capped Composite Statistics

	stimation Unit	Composit	e Intervals		Cu (%)			CuCa _l	o (%)	
	Surration onit	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV
2101	Int5 LG-North	244	731	0.03	0.24	1.2	0	0.03	0.24	1.2
2102	Int1 MIN-North	239	716	0.10	0.71	0.9	0	0.10	0.71	0.9
2201	Int4 LG-South	111	333	0.01	0.07	1.1	0	0.01	0.07	1.1
2202	Int2 MIN-South	737	2,212	0.16	0.69	0.7	1	0.16	0.66	0.7
2300	Int3 LG Deep	154	461	0.03	0.17	1.1	0	0.03	0.17	1.1
2400	Andesite	3,270	9,798	0.07	1.35	1.0	0	0.07	1.35	1.0
	Total / Mean:	4,755	14,251	0.08			1	0.08		

_	stimation Unit	Composito	ge Intervals		Au (g/t)			AuCa	p (g/t)	
_	Surration onit	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV
2101	Int5 LG-North	244	731	0.02	0.27	1.2	0	0.02	0.27	1.2
2102	Int1 MIN-North	239	716	0.04	0.47	1.0	2	0.04	0.17	0.8
2201	Int4 LG-South	111	333	0.02	0.12	1.4	0	0.02	0.12	1.4
2202	Int2 MIN-South	737	2,212	0.08	0.55	0.7	0	0.08	0.55	0.7
2300	Int3 LG Deep	154	461	0.06	0.63	1.1	0	0.06	0.63	1.1
2400	Andesite	3,270	9,798	0.05	3.17	2.3	4	0.04	1.35	1.6
	Total / Mean:	4,755	14,251	0.05			6	0.05		

	Estimation Unit	Composito	ge Intervals		Ag (g/t)			AgCa	p (g/t)	
	Surration onit	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV
2101	Int5 LG-North	193	578	0.14	0.81	0.8	0	0.14	0.81	0.8
2102	Int1 MIN-North	225	674	0.31	4.98	1.3	0	0.31	4.98	1.3
2201	Int4 LG-South	111	333	0.09	0.25	0.6	0	0.09	0.25	0.6
2202	Int2 MIN-South	575	1,724	0.44	23.40	2.7	6	0.36	2.00	0.7
2300	Int3 LG Deep	154	461	0.16	1.97	1.2	1	0.15	0.70	0.9
2400	Andesite	2,891	8,666	0.30	39.87	3.4	20	0.26	3.00	1.0
	Total / Mean:	4,149	12,436	0.30			27	0.26		

Table 14-12 Ketchan Deposit - Uncapped and Capped Composite Statistics

	stimation Unit	Composite	e Intervals		Cu (%)			CuCa _l	p (%)	
	Surration ont	Count	Metres	mean	max	CV	#Cap'd	mean	max	CV
2101	K1_1	155	465	0.05	0.35	1.3	0	0.05	0.35	1.3
2102	K1_2	2,064	6,190	0.12	1.88	1.4	0	0.12	1.88	1.4
2201	K2_1	32	96	0.02	0.05	0.5	0	0.02	0.05	0.5
2202	K2_2	508	1,525	0.09	2.77	2.4	3	0.09	1.70	2.0
2203	K2_3	733	2,196	0.12	1.64	1.7	0	0.12	1.64	1.7
2300	K3	228	685	0.01	0.13	1.8	0	0.01	0.13	1.8
2400	P Volcanics 1	64	192	0.02	0.10	0.5	0	0.02	0.10	0.5
2600	P Volcanics 3	223	670	0.15	0.58	8.0	0	0.15	0.58	0.8
	Total / Mean:	4,007	12,018	0.11			3	0.11		

	Stimation Unit	Composite	e Intervals		Au (g/t)		AuCap (g/t)			
	Estimation Unit		Metres	mean	max	CV	#Cap'd	mean	max	CV
2101	K1_1	154	463	0.04	0.53	1.7	4	0.03	0.22	1.2
2102	K1_2	2,050	6,191	0.07	1.85	1.7	0	0.07	1.85	1.7
2201	K2_1	32	96	0.02	0.47	3.3	1	0.01	0.03	0.6
2202	K2_2	506	1,524	0.08	2.06	2.1	4	0.08	1.23	1.9
2203	K2_3	727	2,197	0.06	1.49	1.8	4	0.06	0.86	1.6
2300	K3	227	685	0.01	0.24	1.9	8	0.01	0.05	0.9
2400	P Volcanics 1	64	193	0.03	0.41	2.4	3	0.02	0.15	1.5
2600	P Volcanics 3	222	671	0.05	0.22	1.0	0	0.05	0.22	1.0
	Total / Mean:	3,982	12,020	0.06			24	0.06		

	stimation Unit	Composite	e Intervals		Ag (g/t)			AgCa	p (g/t)	
	ESTITIATION OF III		Metres	mean	max	CV	#Cap'd	mean	max	CV
2101	K1_1	154	463	0.34	1.58	0.9	0	0.34	1.58	0.9
2102	K1_2	1,836	5,534	0.63	6.31	1.1	0	0.63	6.31	1.1
2201	K2_1	32	96	0.91	1.75	0.4	0	0.91	1.75	0.4
2202	K2_2	506	1,524	1.25	60.70	3.4	14	1.01	16.00	2.2
2203	K2_3	670	2,021	0.83	72.25	3.6	4	0.72	10.00	1.4
2300	K3	227	685	0.31	2.17	1.1	5	0.30	1.72	1.1
2400	P Volcanics 1	64	193	0.53	5.11	1.7	7	0.38	1.54	0.9
2600	P Volcanics 3	110	331	0.52	1.65	0.6	0	0.52	1.65	0.6
	Total / Mean:	3,599	10,846	0.72			30	0.66		

14.6 Variography

Gate was the only project area where sufficient drill data was available to calculate meaningful experimental variograms. Spatial continuity of capped composite data was analysed using Supervisor® software. Data were subdivided by modeled geologic zones, to establish suitable variogram model parameters for use in estimation by ordinary kriging (OK). The variogram models used are listed in Table 14-13 to Table 14-15 for copper, gold and silver respectively.

Directions of continuity were determined from variogram maps. The nugget effect and sill contributions were derived from down-hole experimental variograms followed by final model fitting on directional variogram plots.

Table 14-13 Copper Variogram Models - Gate

Domain	Axis	Direction	Nugget	Spherical Component 1		Spherical Component 2	
Domain	AXIS	(dip/azimuth)	Effect	Sill	Range(m)	Sill	Range(m)
P otassic	Х	50/281			15		250
Alteration	Υ	-33/242	0.17	0.24	55	0.59	250
Alteration	Z	20/165			35		190
Non-Potassic	Х	65/215			5		75
Alteration	Υ	-25/215	0.07	0.19	45	0.74	225
Alleration	Z	00/125			10		100

Source: Advantage Geoservices (2025)

Table 14-14 Gold Variogram Models - Gate

Domain	Axis	Direction	Nugget	Spherical Component 1		Spherical Component 2	
Domain	AXIS	(dip/azimuth)	Effect	Sill	Range(m)	Sill	Range(m)
Potassic	Х	28/086			40		165
Alteration	Υ	54/224	0.15	0.48	25	0.37	180
Alteration	Z	-20/165			15		100
Non-Potassic	Х	52/280			30		410
Alteration	Υ	-34/250	0.17	0.33	10	0.50	160
Alleration	Z	15/170			15		75

Source: Advantage Geoservices (2025)

Table 14-15 Silver Variogram Models - Gate

Domain	Avic	Axis Direction		Spherical Component 1		Spherical Component 2	
Domain	AXIS	(dip/azimuth)	Effect	Sill	Range(m)	Sill	Range(m)
Potassic	Х	40/199			20		240
	Υ	-50/079	0.13	0.27	55	0.60	205
Alteration	Z	05/355			55		85
Non-Potassic	Х	-29/108			85		165
	Υ	-57/256	0.12	0.43	15	0.45	275
Alteration	Z	-15/010			15		85

14.7 Grade Interpolation

Based on contact plots and geologic understanding, estimation boundary relationships were determined for all combinations of geologic codes at each project area. Treatment of grades across contacts were implemented consistently for estimation of copper, gold and silver grades; contact conditions are listed in Table 14-16.

All grade variables were interpolated using Geovia GEMS® software. Copper, gold and silver grades were estimated by ordinary kriging at Gate; the other three deposits were estimated by inverse distance cubed weighting (ID3). Interpolation details are listed in Table 14-17.

At Gate, block estimation was in two passes by OK with spherical searches doubling in radius from 75 to 150 metres on Pass 2. Sample weighting was based on the variogram models per metal (tabled above).

Grades at the Man Area were estimated in a single pass. Search orientation and radii were based on variography per metal, per alteration type. Inverse distance estimation results better matched supporting composite data due mainly to the relatively low drill density and ID was chosen over OK as the interpolation methodology.

Dillard grades were estimated by ID3 based primarily on lithology with a search orientation parallel to the overall deposit trend. Andesite grade adjacent to two porphyry units was also controlled by 10 m wide concentric bands starting from the contact with the low-grade north porphyry (to 100 m) and the south mineralized porphyry (to 70 m). The distances used for this estimation approach were based on plots of copper grade versus distance to the respective contact in consultation with Kodiak geology personnel.

At the Ketchan zone, grades for all lithologies were estimated using a search derived from modeling a 0.05% Cu variogram. Ranges in the two-pass approach were based on the two structures of that variogram model.

Table 14-16 Geologic Contact Relationships for Grade Estimation

		- a a u a	Match Codes for Estimation	Match Codes for Estimation
Area		Estimation Unit	(all metals)	Pass 2 (all metals)
Gate	151	Potassic-North	151	151, 152, 153
	152	Phyllic/Argillic-North	152, 153	152, 153
	153	Propylitic-North	152, 153	152, 153
	251	Potassic-South	251	251, 252, 253
	252	Phyllic/Argillic-South	252, 253	252, 253
	253	Propylitic-South	252, 253	252, 253
Man	141	FeOx	141	
	151	Potassic	151	
	152	Phyllic	152, 153, 253	
	153	Inner Propylitic	152, 153, 253	
	253	Outer Propylitic	152, 153, 253	
Dillard	2101	Low Grade-North	2101	
	2102	Mineralized-North	2102, 2400	
	2201	Low Grade-South	2201	
	2202	Mineralized-South	2202, 2400	
	2300	Low Grade-Deep	2300	
	2400	Andesite	2400, 2102, 2202	
Ketchan	2101	K1_1	2101	
	2102	K1_2	2102, 2203, 2500, 2600	
	2201	K2_1	2201	
	2202	K2_2	2202, 2400	
	2203	K2_3	2203, 2102, 2600	
	2300	K3	2300	
	2400	Pvol_1	2400, 2202	
	2500	Pvol_2-1	2500, 2102	
	2600	Pvol_2-2	2600, 2102, 2203	

Table 14-17 Grade Estimation Parameters

Project	Metal	Domain	Dana	Search Di	rection (dip	/ azimuth)	Sea	arch Radius	(m)	Number of Samples for Estimate		
Area	Metai	Domain	Pass	Х	Υ	Z	Х	Υ	Z	min	max	max/hole
Gate	Cu, Au, Ag	All alteration types	1	00/090	00/000	-90/000	75	75	75	6	12	5
			2	00/090	00/000	-90/000	150	150	150	6	12	5
Man	Cu	Fe Oxide	1	00/090	-15/180	-75/000	150	130	60	6	12	5
		Potassic Altered	1	26/274	49/151	30/020	205	70	100	6	12	5
		Non-Potassic Altered	1	00/125	00/035	-90/000	150	100	175	6	12	5
	Au	Fe Oxide	1	00/100	-05/190	-85/010	150	120	70	6	12	5
		Potassic Altered	1	79/353	05/109	-10/020	260	125	75	6	12	5
		Non-Potassic Altered	1	00/135	00/045	-90/000	130	120	290	6	12	5
	Ag	Fe Oxide	1	00/010	00/100	-90/000	140	140	40	6	12	5
		Potassic Altered	1	15/345	00/075	-75/345	80	130	150	6	12	5
		Non-Potassic Altered	1	54/252	08/151	35/055	195	95	90	6	12	5
Dillard	Cu, Au, Ag	All lithologies	1	00/106	90/016	00/196	50	50	25	5	20	4
	Cu, Au, Ag	Andesite within distance bands *	1D*	00/090	00/000	-90/000	75	75	75	5	20	4
	Cu, Au, Ag	All lithologies	2	00/106	90/016	00/196	150	150	50	5	20	4
	Cu, Au, Ag	Andesite within distance bands *	2D	00/090	00/000	-90/000	150	150	150	5	20	4
	Cu, Au, Ag	All lithologies	3	00/106	90/016	00/196	300	300	100	5	20	4
Ketchan	Cu, Au, Ag	All lithologies	1	80/335	10/155	00/065	45	25	15	2	12	5
			2	80/335	10/155	00/065	180	145	75	5	20	4

^{*} D = 10 m distance bands; 70 m into Andesite from INT2 (2202) & 100 m into Andesite from INT5 (2101)

14.8 Density Assignment

Density was assigned to block models based on averages of measurements in each project area per geologic unit. At Man, density was based on the alteration block model; in other zones, average density was assigned based on lithology models. Table 14-18 lists basic statistics of density measurements and the mean values applied to the block models. Overburden was assigned a density of 2 t/m³.

Table 14-18 Density Measurements by Project Area

	Gate Lithology	Count	mean	min	max	CV
	Gate Littlology		(t/m³)	(t/m³)	(t/m³)	CV
101	Andesite	1,758	2.76	2.01	3.26	0.0
111	Hyrothermal Breccia	944	2.74	2.33	3.32	0.0
112	Diorite	6,986	2.71	2.05	3.85	0.0
113	Felsic Dyke	85	2.69	2.54	2.77	0.0
	Total Measurements:	9,773				

	Man Alteration	Count	mean (t/m³)	min (t/m³)	max (t/m³)	CV
141	FeOx	0	2.68			
151	Potassic	232	2.68	2.10	3.60	0.0
152	Phyllic	336	2.68	1.99	2.88	0.0
153	Inner Propylitic	68	2.75	2.05	2.93	0.0
253	Outer Propylitic	225	2.72	2.03	2.96	0.0
	Late Dykes - barren	0	2.70			
	Total Measurements:	861				

	Dillard Lithology	Count	mean (t/m³)	min (t/m³)	max (t/m³)	cv
2101	Low Grade-North	88	2.72	2.61	2.93	0.0
2102	Mineralized-North	76	2.75	2.55	2.98	0.0
2201	Low Grade-South	24	2.73	2.65	2.86	0.0
2202	Mineralized-South	225	2.71	2.53	2.96	0.0
2300	Low Grade-Deep	71	2.78	2.53	2.89	0.0
2400	Andesite	1,084	2.79	2.54	3.00	0.0
	Late Dykes - barren	0	2.77			
	Total Measurements:	1,568				

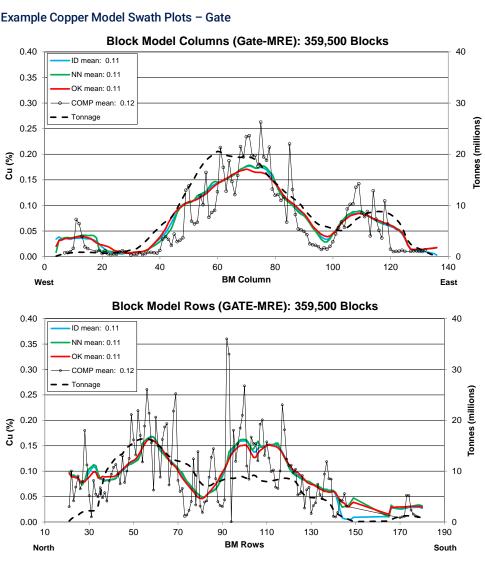
Ko	Ketchan Lithology		mean	min	max	CV
r\e			(t/m³)	(t/m³)	(t/m³)	CV
301 - 307	Volcaniclastics - barren	93	2.75	2.49	2.93	0.0
2101 - 2102	K1 Intrusion	522	2.68	1.52	3.40	0.1
2201 - 2203	K2 Intrusion	315	2.76	2.39	3.33	0.0
2300	K3 Intrusion	59	2.69	2.49	2.74	0.0
2400 - 2600	Prospective Volcanics	42	2.63	2.39	2.83	0.1
	Total Measurements:	1,031				

14.9 Model Validation

Estimated grades for all elements were validated visually by comparing composite to block values in plan view and on cross-sections. There is good visual correlation between composite and estimated block grades for all modeled variables in each of the project areas. Example vertical sections for Gate and Ketchan, comparing drill hole composites with estimated copper grades, are shown in Figure 14.2; section locations are included in Figure 14.1. In the Ketchan section, all estimated blocks are classified as Inferred Mineral Resource; blocks in the Gate section are both indicated and inferred (see Figure 14.4).

Block & Composite Grade Copper (%) Gate Mineral Resource Estimate Vertical Section 681,500 E 500 m Block & Composite Grade Copper (%) 1000 EI Ketchan Mineral Resource Estimate 200 m Vertical Section 5,516,700 N

Figure 14.2 Example Sections - Copper Composites and Block Grades at Gate and Ketchan


Nearest neighbour (NN) block models were also estimated for all elements and project areas using search parameters consistent with those used for the mineral resource estimate. At Gate where the MRE is by OK, an inverse distance model was also estimated for use in the validation process.

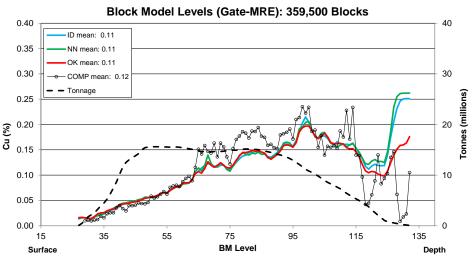

Grade models were compared spatially using swath plots; example plots for Gate copper resource blocks, are included in Figure 14.3; plots are across block model rows, columns and levels. Model average grades above zero cutoff (shown on plots) compare very closely indicating no global bias.

Figure 14.3 Example Copper Model Swath Plots - Gate

14.10 Resource Classification

Resource classification is based drill spacing calculated from the average distance to the three closest holes. Based on visual inspection of drill spacing in conjunction with a range of other variables including: distance to closest sample, number of holes within various search distances and the ranges of indicator variograms at low grades, a drill spacing of 150 m was set as the requirement for classification as an Inferred Mineral Resource.

At Gate, where there is more drilling and a higher degree of geologic confidence, Indicated Mineral Resource is classified with a drill spacing of up to 70 m. An example section showing resource classification at Gate is included as Figure 14.4.

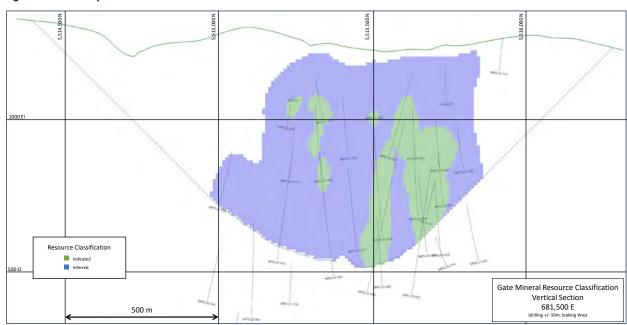


Figure 14.4 Example Sections - Resource Classification

Source: Advantage Geoservices (2025)

14.11 Reasonable Prospects of Eventual Economic Extraction

Pit optimization was carried out by JDS Energy & Mining personnel; the resource shell was generated based on all indicated (Gate only) and inferred blocks. Blocks were exported in two model grids: one for Ketchan and one for the grouped Gate, Man and Dillard (refer to Table 14-3). Reasonable prospects of eventual economic extraction were established by constraining the resource to optimized Lerchs-Grossmann conceptual pit shells at each project area; general parameters used in the optimization process are provided in Table 14-19. All material included in the Mineral Resource Estimate is contained within the optimized pit shells.

Table 14-19 Pit Optimization Parameters

Metal	Metal Price A	vg.Recovery
Cu	\$ 4.2/lb	84%
Au	US\$ 2600/oz	66%
Ag	US\$ 30/oz	58%
Mining Cost:	C\$ 2.30/tonne	
Avg. Process Cost:	C\$ 8.50 / tonne, including G &	Α
Pit slope:	45°	

Exchange Rate: 1.35 CAD:USD

Source: Advantage Geoservices (2025)

14.12 Mineral Resource Statement

Mineral resource tabulation is based on copper equivalent cut-off grade (CuEq). The resource is stated in Table 14-20 at a CuEq cut-off of 0.2% CuEq. Using values in Table 14-19 CuEq is calculated as:

$$CuEq(\%) = Cu(\%) + Au(g/t) \times 0.6606 + Ag(g/t) \times 0.0069$$

A range of CuEq cut-offs grades are included in Table 14-21 to demonstrate cut-off grade sensitivity. The values presented in the cut-off grade sensitivity analysis are for comparative purposes only and should not be considered Mineral Resources.

Table 14-20 Statement of Mineral Resource Estimate at $0.2\,\%$ CuEq Cut-off for the Gate, Man, Dillard and Ketchan Zones

Project	Resource	Tonnes		Average	e Grade			Containe	ed Metal	
Area	Category	(millions)	Cu (%)	Au (g/t)	Ag (g/t)	CuEq (%)	Cu (Mlbs)	Au (Mozs)	Ag (Mozs)	CuEq (Mlbs)
Gate	Indicated	56.4	0.31	0.14	1.18	0.42	385	0.25	2.14	522
Gate	Inferred	114.5	0.27	0.13	1.07	0.36	682	0.48	3.94	909
Man	Inferred	8.3	0.17	0.30	0.56	0.37	31	0.08	0.15	68
Dillard	Inferred	51.9	0.20	0.09	0.39	0.26	229	0.15	0.65	298
Ketchan	Inferred	66.0	0.24	0.12	1.09	0.33	349	0.25	2.31	480
Total Ir	ndicated	56.4	0.31	0.14	1.18	0.42	385	0.25	2.14	522
Total Ir	nferred	240.7	0.24	0.12	0.91	0.33	1,291	0.96	7.05	1,754

Source: Advantage Geoservices (2025)

Notes: 1. The Mineral Resources were estimated using the Canadian Institute of Mining, Metallurgy and Petroleum(CIM), Definition Standards for Mineral Resources and Reserves, as prepared by the CIM Standing Committee and adopted by CIM Council. 2. A cut-off grade of 0.2% CuEq was applied to the MRE models within the conceptual pit shells. 3. Pit shell optimization used average recoveries derived from metallurgical test work of Cu 82%, Au 60% and Ag 54%, exchange rate of 1.35 CAD:USD, mining cost of C\$2.3/t, process cost of C\$8.5/t, and pit slope of 45 degrees. 4. Copper equivalence (CuEq) and constraining conceptual pit shells assume metal prices (US\$) of: \$4.2/lb copper, \$2,600/oz gold, \$30/oz silver.

- 5. The copper equivalency equation used is: $CuEq(\%) = Cu(\%) + Au(g/t) \times 0.6606 + Ag(g/t) \times 0.0069$ 6. Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the mineral resources will be converted into mineral reserves in the future. The MRE may be materially affected by considerations including, but not limited to, permitting, legal, sociopolitical, environmental issues, market conditions or other factors.
- 7. All figures are rounded to reflect the relative accuracy of the estimate. Totals may not sum due to rounding as required by reporting guidelines.

Table 14-21 Cut-off Grade Sensitivity Summary

Cut-off		Indicated			Inferred	
Grade	Tonnes	CuEq	CuEq	Tonnes	CuEq	CuEq
(%CuEq)	(millions)	(%)	(Mlbs)	(millions)	(%)	(Mlbs)
0.22	50.6	0.44	491	204.5	0.35	1,578
0.20	56.4	0.42	522	240.7	0.33	1,754
0.18	62.4	0.39	537	281.7	0.31	1,936
0.15	72.3	0.36	574	355.6	0.28	2,183
0.12	82.4	0.33	600	435.6	0.25	2,415

Notes: 1. Copper equivalence (CuEq) assumes metal prices (US\$) of: \$4.2/lb copper, \$2,600/oz gold, \$30/oz silver.

Source: Advantage Geoservices (2025)

*** Sections 15 to 22 omitted. This technical report is not for an advanced project. ***

CuEq is based on average recoveries derived from metallurgical test work as applied in the pit optimization process. Average recoveries are: Cu 82%, Au 60% and Ag 54%.

^{3.} The copper equivalency equation used is: $CuEq(\%) = Cu(\%) + Au(g/t) \times 0.6606 + Ag(g/t) \times 0.0069$.

23 Adjacent Properties

The MPD Project is located in the Quesnel Terrane in south-central British Columbia within a 150 km long north south oriented Copper Porphyry trend. The area is host to numerous copper-gold porphyry deposits and mines including the nearby Highland Valley Copper Mine, Copper Mountain Mine and New Afton Mine. Mineralisation in the area is hosted in Nicola Group rocks. The MPD Project is surrounded by active claims held by public companies and private interests. Exploration in the area surrounding the Project is ongoing. Relevant producing mines located adjacent to the MPD Property are presented in Figure 23.1, with adjacent active claims and owners shown in Figure 23.2.

This section discusses mineral properties that occur outside of the MPD Project. The QPs have not visited any of these projects and are unable to verify information pertaining to mineralization on the competitor properties, and therefore, the information in the following section is not necessarily indicative of the mineralization on the Project that is the subject of this Report. The information provided in this section is simply intended to describe examples of the type and tenor of mineralization that exists in the region and is being explored for at the Property.

23.1 Copper Mountain

The Copper Mountain Mine is located approximately 20 km south of Princeton, BC, and approximately 30 km south of Kodiak's MPD Project (Figure 23.1). The Copper Mountain Mine is an open pit mine and is 100% owned by Hudbay Minerals Inc., (Hudbay Minerals Inc., 2025b).

The Copper Mountain deposit is classified as an alkalic copper-gold porphyry. The mineralized material is primarily hosted within volcanic and volcaniclastic rocks of the Late Triassic Nicola Group, which were subsequently intruded by the multi-phase Copper Mountain Intrusive Complex. Mineralization of copper, gold, and silver occurs as disseminated grains scattered throughout the rock, within dense vein networks known as stockworks, and in mineralized breccia zones. The primary copper-bearing minerals are chalcopyrite and bornite, and their emplacement created distinct alteration zones in the surrounding rock. These patterns, which include potassic, sodic-calcic, and propylitic alteration, are the characteristic chemical footprint of this type of large-scale mineralizing system (Sim et al., 2022).

The Mineral Reserves and Resources of the Copper Mountain Mine as of January 1, 2025, are presented in Tables 23-2 and 23-3.

Table 23-1 Copper Mountain Mineral Reserve Estimate as of January 1, 2025

Category	Tonnes (000's)	Cu Grade (%)	Au Grade (g/t)	Ag Grade (g/t)
Proven	172,900	0.269	0.124	0.72
Probable	173,100	0.222	0.109	0.62
Total Proven + Probable	346,000	0.245	0.116	0.67

Source: Hudbay Minerals (2025a)

Figure 23.1 Copper- Gold Porphyry Mines in the Vicinity

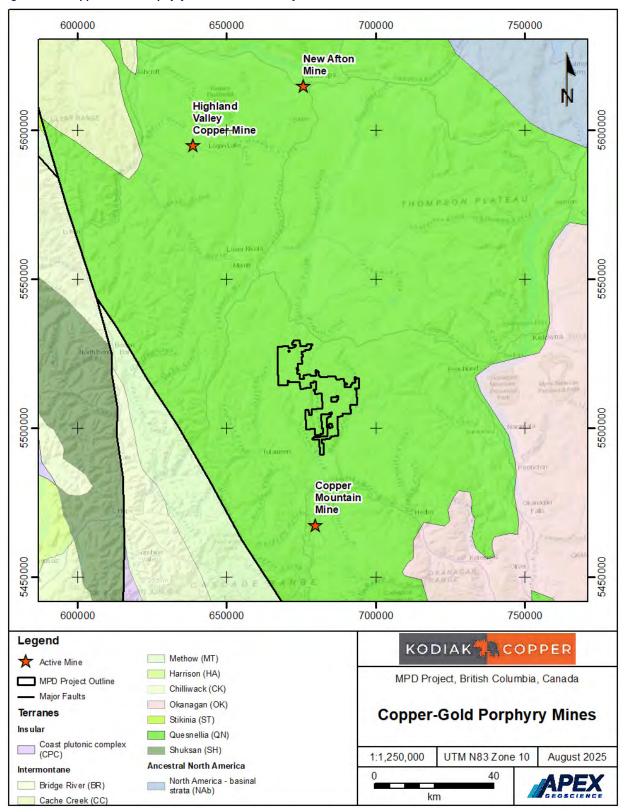


Figure 23.2 Adjacent Properties to MPD

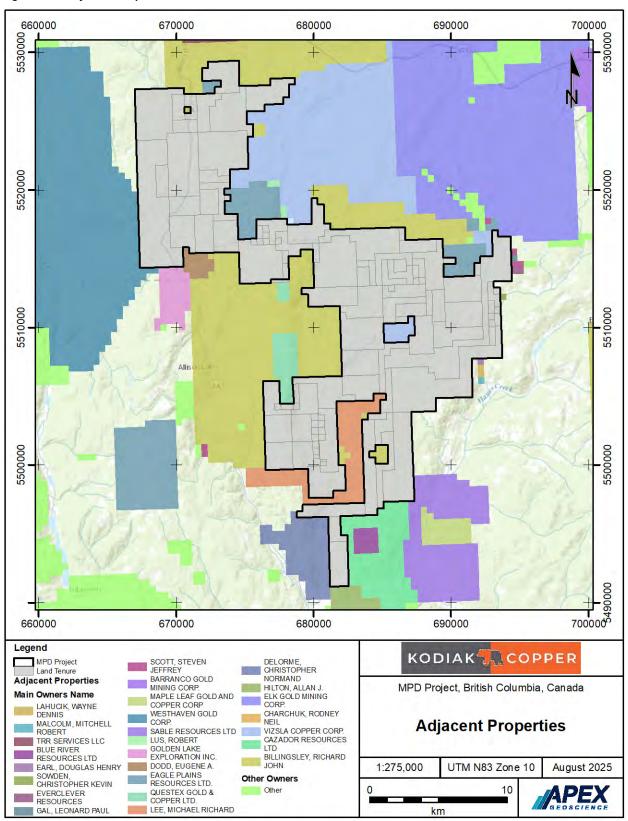


Table 23-2 Copper Mountain Mineral Resource Estimate as of January 1, 2025

Category	Tonnes (000's)	Cu Grade (%)	Au Grade (g/t)	Ag Grade (g/t)
Measured	31,900	0.213	0.092	0.72
Indicated	92,800	0.209	0.109	0.66
Total Measured + Indicated	124,700	0.210	0.105	0.68
Total Inferred	372,200	0.250	0.128	0.60

Source: Hudbay Minerals (2025a)

The QPs of this Report have not visited the Copper Mountain Mine and are unable to verify information pertaining to mineralization on the competitor properties, and therefore, the information in this section is not necessarily indicative of the mineralization on the MPD Project that is the subject of this Report.

23.2 Highland Valley

Teck Resources Ltd.'s Highland Valley Copper Mine is the largest open-pit copper mine in Canada, located in south-central BC, approximately 17 km west of Logan Lake, approximately 50 km southwest of Kamloops, and approximately 60 km northeast of Kodiak's MPD Project (Figure 23.1).

Mineralized material from the Highland Valley Copper Mine is mined from the Valley, Lornex, and Highmont pits, all located within the Guichon Batholith. The porphyry deposits share a similar geological history, characterized by intense quartz veining followed by a late sericite and argillic alteration overprint. The main copper and molybdenum minerals (chalcopyrite, bornite, and molybdenite) were introduced with both the veining and the late-stage alteration. The Valley deposit is hosted in the Bethsaida granodiorite, and the Lornex deposit is mainly hosted in the Skeena quartz-diorite. The Highmont deposit is entirely hosted within the Skeena granodiorite and the Gnawed Mountain Composite Dyke (GMCD) which is a multiphase intrusion and hydrothermal breccia body.

The Mineral Reserves of the Highland Valley Copper Mine as of December 31, 2024 are presented in Table 23-1. On July 23, 2025, Teck Resources announced the approval of the construction of the Highland Valley Copper Mine Life Extension Project that is expected to extend the mine life to 2046 (Teck Resources Ltd., 2025).

Table 23-3 Highland Valley Copper Mineral Reserve Estimate as of December 31, 2024.

Category	Tonnes (000's)	Cu Grade (%)	Mo Grade (%)
Proven	110,500	0.34	0.008
Probable	98,800	0.26	0.012
Total Proven + Probable	209,300	0.30	0.010

Source: Teck Resources Ltd. (2025)

The QPs of this Report have not visited the Highland Valley Copper Mine and are unable to verify information pertaining to mineralization on the competitor properties, and therefore, the information in this section is not necessarily indicative of the mineralization on the MPD Project that is the subject of this Report.

23.3 New Afton

The New Afton Mine is located approximately 10 km west of Kamloops, BC, and approximately 85 km north of Kodiak's MPD Project (Figure 23.1). The New Afton Mine is an underground copper and gold mine and is 100% owned by New Gold Inc. New Afton is a brownfield redevelopment, built on the site of the historical Afton open-pit mine that operated from the 1970s until the late 1990s. New Gold now uses the exhausted open pit as the tailings storage facility for the modern underground operation.

The New Afton Mine is an alkalic copper-gold porphyry deposit hosted within the Quesnel Terrane. The deposit formed due to the interaction of the volcanic rocks of the Nicola Group with the Iron Mask Batholith. This batholith is the causative intrusion, providing the necessary heat and metal-rich hydrothermal fluids that drove the mineralizing event. The resulting copper-gold mineralization occurs in several east-west trending, subvertical tabular zones. The mineralization is found as disseminations, stringers, and fracture-fillings within both the Nicola Group volcanic rocks and the intrusive diorite. The deposit is comprised of three main areas: the Main zone, which includes the active B3 and C-Zone mining areas; the smaller satellite Hanging wall zones; and the Eastern zones (including the East Extension and K-Zone) (Parsons et al., 2025).

The Mineral Reserves and Resources of the New Afton Mine as of December 31, 2024, are presented in Tables 23-4 and 23-5.

Table 23-4 New Afton Mineral Reserve Estimate as of December 31, 2024

Category	Tonnes (000's)	Au Grade (g/t)	Ag Grade (g/t)	Cu Grade (%)	Au (koz)	Ag (koz)	Cu (Mlb)
Proven	-	-	-	-	-	-	-
Probable	39,567	0.65	1.8	0.72	828	2,253	631
Total Proven + Probable	39,567	0.65	1.8	0.72	828	2,253	631

Source: Parsons et al. (2025)

Table 23-5 New Afton Mineral Resource Estimate as of December 31, 2024

Category	Tonnes (000's)	Au Grade (g/t)	Ag Grade (g/t)	Cu Grade (%)	Au (koz)	Ag (koz)	Cu (Mlb)
Measured	51,195	0.58	1.81	0.67	958	2,976	758
Indicated	30,448	0.40	1.49	0.51	393	1,455	342
Total Measured + Indicated	81,643	0.51	1.69	0.61	1,352	4,431	1,100
Inferred	132	0.19	0.54	0.19	1	2	1

Source: Parsons et al. (2025)

The QPs of this Report have not visited the New Afton Mine and are unable to verify information pertaining to mineralization on the competitor properties, and therefore, the information in this section is not necessarily indicative of the mineralization on the MPD Project that is the subject of this Report.

23.4 Neighboring Claims

Adjacent claimholders shown in relation to the Project are presented above in Figure 23.2. Billingsley, Richard John owns the largest adjacent boundary, to the north and west of the MPD Project. Vizsla Copper Corp. and Elk Gold Mining Corp. properties are located to the north while Westhaven Gold Corp. claims are located to the west of the MPD Project. Lee, Michael Richard property is located to the east of Axe claims between MPD Project tenures. Eagle Plains Resources Ltd. owns multiple patches of claims to the west and north of the MPD Project. Properties to the south include properties owned by Christopher Normand, Cazador Resources Ltd., and Sable Resources Ltd.

24 Other Relevant Data and Information

There is no other relevant data or information available that is necessary to make the technical report understandable and not misleading.

25 Interpretation and Conclusions

The MPD Project comprises 108 mineral claims covering a total area of approximately 344 km² (34,430 ha). The Project is located in the Quesnel Terrane in south-central British Columbia, a prolific mining district with producing mines and excellent infrastructure.

25.1 Geology and Mineralization

The MPD Project is located in the Quesnel Terrane of British Columbia's Intermontane Belt. This terrane is dominated by alkalic and calc-alkalic island-arc volcanics and co-magmatic intrusives of the Late Triassic-Early Jurassic Nicola Group and extends from the Canadian border to north of Kamloops. Regionally, the geology has been divided into three belts—Western, Central, and Eastern—separated by major fault systems, which played a critical role in the emplacement of volcanic and intrusive rocks. Southern British Columbia is known to host large, low-grade copper-gold-molybdenum porphyry deposits hosted within these three belts.

At the property level, the geology is dominated by volcanic and sedimentary rocks of the Nicola Group, specifically the Iron Mountain and Elkhart formations. These are overlain or intruded by multiple intrusive suites, including Jurassic intrusions of the Nelson Suite and others ranging from Late Triassic to Early Cretaceous in age. Late Triassic porphyritic monzonite and diorite intrusions are strongly associated with copper-gold mineralization and display classic porphyry-style alteration patterns.

The structural framework of the Project is complex, shaped by multiple tectonic episodes. Pre-, syn-, and post-mineralization faults cut through the area, reflecting at least three major deformation events. Fault zones such as the Summers Creek and Allison systems have provided conduits for intrusions and hydrothermal fluids, controlling the location and geometry of mineralized zones.

A total of 54 mineral occurrences are known on the Property. To date exploration and drilling have focused heavily on seven main zones: Gate, Man, Dillard, Ketchan, West, South and Adit. All seven zones are associated with porphyry-style copper-gold mineralization hosted in a range of intrusive and volcanic rock types, often showing structural or lithological controls. Chalcopyrite is the dominant copper mineral across the zones. Copper mineralization is commonly associated with potassic alteration, with varying contributions from phyllic, propylitic, calcic, and sodic assemblages. Intrusive complexes, dyke swarms, and breccias are common geological features, and mineralization is frequently enhanced near intrusive contacts or breccia zones.

25.2 Historical Exploration

The current MPD Project is a consolidation of numerous historical properties. The original land package consisting of 28 mineral claims, acquired by Kodiak in late 2018, consolidated three historical prospect areas (Man, Prime and Dillard). The neighbouring and contiguous Axe property was acquired by Kodiak in 2021, the Don Rippon claim block in 2023 and the Aspen Grove property was acquired in 2024. There has been no advanced development or production on the Project to date.

Many different companies have worked separate parts of the historical Man, Prime, and Dillard properties dating back to 1937, when the original claims were staked in the vicinity of the Prime Target. There are no records of exploration conducted between 1937 and 1961. Historical exploration at the MPD Project has comprised geological mapping, surface sampling, trenching, drilling, and geophysical surveys by several companies from the early 1960s to 2018.

A total of 122 diamond drill holes and 26,345 metres were completed on the historical MPD claims by previous operators from 1965 to 2014. A total of 33 holes (DDH) were drilled between 1965 and 1969, with 12 DDH between 1979 and 1981, 8 DDH in 1988, 11 DDH from 1989 to 1991, 35 holes between 2007 and 2010, 2 DDH in 2013 and another 21 DDH from 2013 to 2014. Another 2 DDH drilled in 1987 and 2 DDH in 1999 are excluded from the total, as their collar information cannot be confirmed. The historical drilling identified and was focused on the Man, Prime and Dillard mineralized zones.

Early exploration on the Axe claims dates to the 1920s. Work conducted between the 1920s and 1965 is not documented. Drilling at the historical Axe Property totaled 24,436.83 metres in 267 holes completed by previous operators between 1967 and 2018.

The Aspen Grove area has been prospected since around 1900 when discoveries of high-grade copper were made near Aspen Grove, about 7 km north of the original MPD claims. A total of 129 holes totalling 22,642 metres were drilled at the historical Aspen Grove claims between 1962 and 2016.

25.3 Recent Exploration

Kodiak conducted annual exploration programs at the MPD Project between 2019 and 2024. The exploration programs included diamond drilling, prospecting and surface sampling as well as geophysical surveying including airborne magnetics, electromagnetics, induced polarization and magnetotellurics.

The 2019 exploration program included the collection of 189 soil samples, 141 rock trench samples, and a total of 1,766 m of diamond drilling that were completed in three holes. Historical trench re-sampling at the Man Zone returned assays up to 3.08% copper. Drilling at the Prime Zone was designed to test the horizontal and vertical continuity of higher-grade copper-gold mineralization encountered in two historical holes. The hole at Man was drilled to evaluate property-scale zonation of the larger porphyry system at MPD. All 3 holes intersected porphyry-style mineralization comprised of pyrite and minor chalcopyrite (+/- bornite). The last hole of the 2019 program intersected a new zone of copper-gold mineralization which was named the "Gate Zone". The new discovery underlies a broad 600 x 1,100 m historical copper-in-soil anomaly with over one kilometre of strike near the Prime Zone. Mineralization occurs in altered porphyritic andesite, diorite and/or monzonite, containing pyrite and chalcopyrite (with associated bornite below 500 m).

The 2020 exploration program consisted of 10 diamond drill holes totalling 6,842 m, a ZTEM and aeromagnetic geophysical survey totalling 440 line-km, and the collection of 328 soil samples and 120 rock samples. The drilling traced the extent of copper-gold mineralization at the Gate Zone down to 800 m depth, across a width of 350 m (east-west) and over 100 m in length (north-south). Eight of the ten holes encountered copper mineralization; the remaining two holes were lost due to drilling conditions. Drilling encountered anomalous copper-gold mineralization and altered porphyritic host rocks that display all the hallmarks of a well-developed alkalic porphyry system. The ZTEM survey results and 2D Inversions highlighted a number of linear features running NNE-SSW throughout the block, associated with magnetic lows.

In 2021, the exploration program included the collection of 1,581 soil samples and 181 rock and trench samples; a ground induced polarization (IP) and magnetotelluric (MT) geophysical survey which covered 19.7 line-km; and a total of 21,674 m of diamond drilling, Drilling included 34 holes at the Gate Zone and two holes at the Dillard Area. The Gate Zone mineralization was extended to over a strike length of approximately 1 km, up to a width of 350 m and a depth of greater than 850 m. 3D IP surveying over the Gate Zone identified a relationship between copper-gold mineralization and the distribution of conductive and/or chargeability responses, including what appear to be untested extensions of the zone to the south and east, as well as towards the historical Prime area.

The 2022 exploration program included the collection of 1,708 soil samples and 191 rock and trench samples; a ground induced polarization (3D IP) and magnetotelluric (MT) geophysical survey which covered 67.7 grid line km; and a total of 26,104 m of diamond drilling completed in 41 holes. Drilling continued to focus on expanding the copper-gold mineralization at the Gate Zone and testing the historical Prime and Dillard Zones at depth. Of the 41 holes drilled, 28 were completed in the Gate/Prime area, with several holes targeting nearby geophysical anomalies and 13 holes testing the Dillard Zone. The drilling extended the Gate Zone at depth and confirmed copper mineralization below shallow historical drilling at both the Prime and Dillard Zones. At the Man Zone, coincident depth extensive resistivity and chargeability anomalies were identified below the historical trenching/drilling. The Dillard Zone is a large porphyry system, and the IP responses exhibited complex relationships with mineralization in the area. The small trenching program was completed over the Beyer and Dillard East targets. Gold mineralization at the Beyer target was identified in an intensely altered argillic zone. Samples returned gold assays up to 9.11 g/t Au. Trenching at Dillard East encountered a 085-degree trending mineralized structure in hornblende diorite intensely altered to clay and sericite.

The 2023 exploration program included the collection of 2,608 soil samples and 57 rock samples; a ground induced polarization (3D IP) and magnetotelluric (MT) geophysical survey which covered 29.6 grid line km; and a total of 18,562 m of diamond drilling completed in 33 holes. Drilling targeted the Man Zone (seven holes), the Beyer Zone (five holes), the West Zone (eleven holes), the South Zone (three holes) and 1516 Zone on the Axe claim block (seven holes). Drilling at Man extended copper-gold mineralization from surface down to 995 m depth and along 600 m of strike. Initial drill holes in the West and South Zones were successful in expanding previously known mineralization. Of the 33 holes, 11 were either lost due to drilling conditions, had no significant assay or were not assayed. The 2023 IP survey highlighted a broad chargeability anomaly from surface to 700 m depth at the Blue target. The anomaly is associated with a kilometre-scale copper-in soil anomaly identified in 2021 and prospecting samples with significant copper-gold-silver.

In 2024, the exploration program included the collection of 2,020 soil samples and 67 rock samples; a ground induced polarization (IP) and magnetotelluric (MT) geophysical survey which consisted of 108 grid line-km; and a total of 9,249 m of diamond drilling. The drilling program included 25 holes at seven target areas. The primary goal of the 2024 drill program was to drill new targets developed by Kodiak's exploration team and Al predictive modelling. It also included further drilling to expand the near-surface mineralization envelopes within and adjacent to existing zones. The 2024 IP survey covered the Dillard East and Star target areas. The survey identified several large chargeability highs at both the Dillard East and Star target areas. A two-kilometre-long northeast trending chargeability high was identified that transects the large circular copper-in soil signatures characteristic of the Dillard East and Star targets.

25.4 Mineral Resource Estimate

An Initial Mineral Resource Estimate (MRE) has been prepared for four deposits: Gate, Man, Dillard and Ketchan. The 2025 MRE is reported in accordance with the Canadian Securities Administrators' NI 43-101 rules for disclosure and has been estimated using the CIM "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" dated November 29, 2019, and CIM "Definition Standards for Mineral Resources and Mineral Resource is June 25, 2025.

Mineral Resource modelling was conducted in the UTM coordinate system relative to the North American Datum (NAD) 1983 Zone 10N. Grades in the four project areas were estimated using separate block model frameworks. The Mineral Resource utilized a block model with a size of 10 m x10 m x10 m. Copper (Cu), Gold (Au) and Silver (Ag) grades were estimated for each block using ordinary kriging at Gate; the other three deposits were estimated by inverse distance cubed weighting (ID3).

Undiluted MRE tabulation is based on copper (Cu) equivalent cut-off grade (CuEq). CuEq is calculated as: $CuEq(\%) = Cu(\%) + Au(g/t) \times 0.6606 + Ag(g/t) \times 0.0069$. The reported open-pit resources utilize a cutoff of 0.2% CuEq. Reasonable prospects of eventual economic extraction were established by constraining the resource to optimized Lerchs-Grossmann conceptual pit shells at each area. All material included in the MRE is contained within the optimized pit shells.

The MRE comprises Indicated Mineral Resources of 56.4 million tonnes (Mt) grading 0.42% copper equivalent (CuEq) for 385 million pounds (Mlbs) of copper (Cu) and 0.25 million ounces (Moz) of gold (Au) and Inferred Mineral Resources of 240.7 million tonnes (Mt) grading 0.33% copper equivalent (CuEq) for 1,291 million pounds (Mlbs) of copper (Cu) and 0.96 million ounces (Moz) of gold (Au). Table 25-1 presents the complete 2025 MRE statement.

Table 25-1 Statement of Mineral Resource Estimate at 0.2 % CuEq Cut-off for the Gate, Man, Dillard and Ketchan Zones

Project	Resource	Tonnes	Average Grade				Contained Metal			
Area	Category	(millions)	Cu (%)	Au (g/t)	Ag (g/t)	CuEq (%)	Cu (Mlbs)	Au (Mozs)	Ag (Mozs)	CuEq (Mlbs)
Gate	Indicated	56.4	0.31	0.14	1.18	0.42	385	0.25	2.14	522
Gate	Inferred	114.5	0.27	0.13	1.07	0.36	682	0.48	3.94	909
Man	Inferred	8.3	0.17	0.30	0.56	0.37	31	0.08	0.15	68
Dillard	Inferred	51.9	0.20	0.09	0.39	0.26	229	0.15	0.65	298
Ketchan	Inferred	66.0	0.24	0.12	1.09	0.33	349	0.25	2.31	480
Total Ir	ndicated	56.4	0.31	0.14	1.18	0.42	385	0.25	2.14	522
Total Ir	nferred	240.7	0.24	0.12	0.91	0.33	1,291	0.96	7.05	1,754

Source: Advantage Geoservices (2025)

Notes: 1. The Mineral Resources were estimated using the Canadian Institute of Mining, Metallurgy and Petroleum(CIM), Definition Standards for Mineral Resources and Reserves, as prepared by the CIM Standing Committee and adopted by CIM Council.

2. A cut-off grade of 0.2% CuEq was applied to the MRE models within the conceptual pit shells.

3. Pit shell optimization used average recoveries derived from metallurgical test work of Cu 82%, Au 60% and Ag 54%, exchange rate of 1.35 CAD:USD, mining cost of C\$2.3/t, process cost of C\$8.5/t, and pit slope of 45 degrees.

4. Copper equivalence (CuEq) and constraining conceptual pit shells assume metal prices (US\$) of: \$4.2/lb copper, \$2,600/oz gold, \$30/oz silver.

- 5. The copper equivalency equation used is: $CuEq(\%) = Cu(\%) + Au(g/t) \times 0.6606 + Ag(g/t) \times 0.0069$ 6. Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the mineral resources will be converted into mineral reserves in the future. The MRE may be materially affected by considerations including, but not limited to, permitting, legal, sociopolitical, environmental issues, market conditions or other factors.
- 7. All figures are rounded to reflect the relative accuracy of the estimate. Totals may not sum due to rounding as required by reporting guidelines.

25.5 Conclusions

Seven mineralized zones have been identified on the MPD Project to date: Gate, Man, Dillard, Ketchan, South, West and Adit. As reported herein, an initial MRE has been calculated for the Gate, Man, Dillard and Ketchan zones. Drillhole data utilized in the MRE includes historical drilling assessed to have a high "reliability index" as well as recent drilling completed by Kodiak. The MRE has delineated a sizable copper-gold deposit and mineralization remains open for expansion within and beyond the MRE conceptual pit shells, in multiple directions and at depth.

At the West, Adit and South zones higher-grade, near surface mineralization has been identified. These zones were not included in the current MRE based on the determination that a selection of historical drill holes were

not appropriate for use in resource definition. Some of the historical drill holes lack assay certificates, have unreliable collar coordinates, display wide compositing intervals or employed unreliable drilling techniques. Additional drilling is required over these zones to provide sufficient data for Resource definition work.

Additionally, exploration is required to further define the deposits at surface and evaluate high-priority exploration targets across the Project. A field program of geological mapping and prospecting is proposed. Mapping will be used to support geological modeling, and prospecting will be conducted in areas of interest, including areas identified using VRIFY Artificial Intelligence software.

25.6 Risks and Uncertainties

The main potential risk associated with the Mineral Resource Estimate is the veracity of the supporting drill information, and that risk is deemed to be low. All of the zones included in this MRE were domained using geological models interpreted from both Kodiak and historical drill logs, and with the exception of the Ketchan drilling, the historical core was largely unavailable to audit therefore Kodiak is relying on the competence of the geologists who performed the logging. As more drilling is carried out to upgrade and expand the existing Resources, the project risk will be decreased.

The QPs and Authors are not aware of any other significant material risks to the MRE other than the risks that are inherent to mineral exploration and development in general. The Authors of this report are not aware of any specific environmental, permitting, legal, title, taxation, socio-economic, marketing, political or other relevant factors that might materially affect the results of this Mineral Resource Estimate and there appears to be no obvious impediments to developing the MRE at the MPD Project.

26 Recommendations

Historical and recent drilling have defined significant copper gold mineralization on the MPD Project. The current MRE encompasses only four of the seven mineralized zones identified to date on the Property and has identified a sizable copper-gold deposit. Mineralization remains open for expansion within and beyond the MRE conceptual pit shells, in multiple directions and at depth. Additionally, higher-grade, near surface mineralization has been identified at the West, Adit and South zones indicating that there is potential to expand the current MRE. There is also potential for new discoveries with further exploration drilling.

Phase 1 follow-up exploration should include additional drilling at the West, Adit and South Zones to provide sufficient data for resource definition work. A 5,000 m program of reverse circulation (RC) and core drilling is being conducted on the South, West and Adit Zones as part of Kodiak's 2025 exploration program with the aim of developing Mineral Resource Estimates for these three zones by year end. Additional field work, including geological mapping and prospecting, is proposed for 2025 to further define the known mineralized zones and investigate high priority exploration targets. The mapping will be used to support geological modeling, and prospecting will be conducted in areas of interest to identify and assess exploration targets, including high priority targets identified by previous exploration programs and areas recognized using VRIFY Artificial Intelligence software.

The budget for the Phase 1 resource drilling and the geological mapping/prospecting field program is estimated to be \$3 million, including site preparation and reclamation, laboratory analyses, support costs, labour and environmental work.

In addition to the Phase 1 fieldwork, a Phase 2 program including further drilling and metallurgical testwork is recommended contingent upon the results of Phase 1. This includes additional drilling to expand known zones of mineralization and to test high priority targets. In particular, identifying additional mineralized material within or adjacent to the Resource conceptual pit shells for the deposits reported herein would have a positive impact on the potential economics of the Project. A program of follow-up metallurgical test work will also be developed to build on the initial results received in the first half of 2025. The metallurgical testing and core drilling work recommended for Phase 2 is estimated to cost \$5.6 million (Table 26-1).

Table 26-1 Follow-up exploration recommendations.

Activity Type	Drill holes	Total (m)	Cost per m (all in)	Cost (CAD\$)
Phase 1				
Diamond Drilling: Infill, historical hole confirmation	15	1,500	\$500	\$750,000
Reverse Circulation Drilling: Infill & MRE Expansion	30	3,500	\$370	\$1,295,000
Geological Mapping and Prospecting				\$300,000
Desktop Review				\$150,000
Mineral Resource modeling and Technical Report				\$235,000
			Contingency	\$270,000
		Phase 1 Total	Activities Subtotal	\$3,000,000

Phase 2				
Diamond Drilling Infill, MRE Expansion	30	7,000	\$450	\$3,150,000
Diamond Drilling Exploration	10	3,000	\$450	\$1,350,000
Additional Metallurgical Testwork				\$250,000
Desktop Review and Scoping Studies				\$200,000
Updated Technical Report				\$150,000
			Contingency	\$510,000
		Phase 2	Activities Subtotal	\$5,600,000
			Grand Total	\$8,600,000

27 References

Anderson, R.E., (1975) Diamond drilling report on the Log 54, 63 and 64 MC, Missezula Lake. AR No: 5601

Anderson, R.E., (1976). Diamond drilling & control report on the Log 1-4 Mineral Claims. AR No: 5824

Anderson, R.E., (1979): Induced polarization survey of the Log claims. AR No: 7543

Aulis, R. J. (1991a). Assessment Report Percussion Drilling on the Axe Property. AR No: 21630

Aulis, R.J. (1991b). Report on percussion drilling, Missezula Property: AR No: 21746

Aulis, R.J. (1992): Report on percussion drilling, Missezula Property. AR No: 22555

BC Ministry of Energy and Mines, 2015

Bergey, W.R. (2009). Geological Report on the Highland Valley Property. Assessment Report 31016

Carpenter, T. H. (2005). Assessment Report on a Reverse Circulation Drill Hole Program on the Adit Zone of the Axe Property. AR No: 27891

Carpenter, T.H. and Koffyberg, A. (2018). 2018 Rock Sampling Program on the Man-Prime Property. Assessment Report 37988.

Chapman, D.A. (1970): Tectonic Analysis of Fracture Density to accompany Geological Survey Report by Western Geological Services Ltd. Geochemical Survey Report by D. A. Chapman & Associates Ltd. Photogeological Report. Assessment Report 02356.

Christopher, P.A. (1984): Geological and Geophysical Report on the Prime Claim. Assessment Report 13231.

Christopher, P.A. (1987): Geophysical Report on the Prime Property. Assessment Report 17077.

Christopher, P.A. (1988): Geochemical Report on the Prime Property. Assessment Report 16985.

Cochrane, D.R. (1969): Geophysical Report on an Airborne Magnetometer Survey. Assessment Report 02355.

Cormier, J. (1989): 1989 Geochemical, Geophysical & Trenching Report on the Dill Claim Group. Fairfield Minerals Ltd. Assessment Report 19593.

Cormier, J. (1990): 1990 Geochemical and Geophysical Report on the Dill Claim Group. Fairfield Minerals Ltd. Assessment Report 21198.

Cormier, J. (1991): 1991 Geochemical and Drilling Report on the Dill Claim Group. Fairfield Minerals Ltd. Assessment Report 22220.

Cormier, J. (1992): 1991 Geochemical and Drilling Report on the Dill Claim Group for Fairfield Minerals Ltd. Assessment Report: 22220

Coutts, R.C., McIntyre, D.F., and Nekrasov, B.Z., (1962-1965): Tormont Mines Limited Drill Logs, Par Property, Aspen Grove, B.C.

- Crooker, G.F. (1989): Diamond Drilling Report on the GOLD CORE 1 CLAIM. Assessment Report 19335.
- Crooker, G.F. (1999): Diamond Drilling Report on the Gold Core 1 and Gold Core A and B Mineral Claims. Assessment Report 25992.
- Dilles, J. H., and Einaudi, M. T. (1992): Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada; a 6-km vertical reconstruction. Economic Geology 1992; 87 (8): 1963–2001.
- Fox, P.E. and Christoffersen, J.E. (1970). 1969 Axe Copper-Molybdenum Property Assessment Report. Assessment Report 800841
- Fox, P.E. and Christoffersen, J.E. (1971). 1970 Axe Copper-Molybdenum Property Report. Assessment Report 800394
- Fraser, B.M. (1979): Consolidated Kalco Valley Mines Ltd. Report of Assessment Report on Muf Mineral Claim. Assessment Report 7458.
- Fraser, S. C. (2009): Assessment Report on the Axe Property Axe Claims for Weststar Resources Ltd. AR No: 31576
- Gill, D.G. (1992a): Geological Report on the Man/Prime Group of Claims. Assessment Report 22446.
- Gill, D.G. (1992b): Geochemical Report on the Man/Prime Group of Claims. Assessment Report 22611.
- Gilmour, W.R. (1997): Assessment Report on a Soil Sampling Program on the Prime North Property. Assessment Report 25189.
- Gilmour, W.R. and Koffyberg, A. (2010). 2007, 2008 and 23010 Drilling and 2007-2008 Rock Sampling Programs on the Man Prime Property. Assessment Report 31709.
- Gourlay, A.W. (1991): Zig Property -- Reverse circulation drilling: AR No: 21406
- Gutrath, G. (1977): Outcrop Geology Trenched Areas 1 and 2, Prime Claim Group. Assessment Report 06412.
- Gutrath, G. (1978a): Outcrop Geology Trenched Area, Prime 2 Claim. Assessment Report 06877.
- Gutrath, G. (1978b): Geological and Geophysical Surveys Report on the Prime Claim Group. Assessment Report 06900.
- Gutrath, G. (1979a): Geophysical and Preliminary Geological Report on the Prime Claim Group. Assessment Report 07340.
- Gutrath, G. (1979b): Outcrop Geology Report on the Prime Claim Group. Assessment Report 07521.
- Gutrath, G. (1980a): Outcrop Geology Report on the Prime 1 Claim. Assessment Report 08241.
- Gutrath, G. (1980b): Outcrop Geology Report on the Prime 2 Claim. Assessment Report 08364.
- Harris, S. (2019): 2018 Geological and Drilling Report on the Axe Property. AR No: 38199

- Hudbay Minerals Inc. (2025a): Annual information form for the year ended December 31, 2024; public disclosure dated March 26, 2025, URL < www.sedarplus.ca > [July 2025]
- Hudbay Minerals Inc. (2025b): Hudbay completes transaction to consolidate 100% ownership in the Copper Mountain Mine; news release dated April 31, 2025, URL < https://hudbayminerals.com/investors/press-releases/press-release-details/2025 > [July 2025]
- Kerr, J. R., 2007, Diamond drill report on the Axe Project, Axe Claims, Similkameen Mining Division, British Columbia for Weststar Resources Ltd, Assessment Report 29096.
- Kerr, J.R., 2008, Summary Report on the Axe Project, Axe Claims, Similkameen Mining Division, British Columbia, for Weststar Resources Ltd.
- Kerr, J.R. (2008): Geochemical Report, 2008 on the Geoff Claims, Nicola M.D., BC. Assessment Report 29817.
- Koffyberg, A. (1997). Assessment Report on a Soil Sampling Program on the Prime North Property Prime 1 11 Mineral Claims Summer Creek Area. Assessment Report 25189.
- Koffyberg, A. (2007): Assessment Report on the Geophysical Survey on the Prime/Man Property. Assessment Report 29381.
- Koffyberg, A., and Gilmour, W. (2011). Drilling Programs and Rock Sampling Programs on the Man Prime Property. Assessment Report 31709.
- Kroeker, P. (2025): MPD Metallurgical Testwork. Blue Coast Research Ltd.
- Lammle, C. (1967): Geological and Geophysical Report, Magnetometer Survey, Strike-Lorna Group.
- Logan, J.L., (2014): Ketchan Lake Geological Report. Consultant's report for Kaizen Discovery.
- Logan, J.L., (2016): Review of 2015 & 2016 Drill Core Ketchan Lake Property. Consultant's report for Kaizen Discovery.
- Logan, J.M., and Mihalynuk, M.G. (2005): Porphyry Cu-Au deposits of the Iron Mask Batholith, southeastern British Columbia. In: Geological Fieldwork 2004, British Columbia Ministry of Energy and Mines, British Columbia Geological Survey Paper 2005-1, pp. 271-290.
- Limion, H. (1980): IP Survey Report on the Prime, HG 1, HG 2, HG 6 FR Claims. Assessment Report 08692.
- MacLeod, J.W. (1963): Geophysical and Geochemical Survey Report on the Primer Group for McIntyre Porcupine Mines Ltd. Assessment Report 00493.
- Macauley, T.N. (1971). Geochemical Report on the Axe and Ski Groups. Assessment Report 2827.
- Malcolm, D.C. (1973): Summary on Adonis Mines Ltd. Summers Creek Property. Report 800457?
- Mehner, D.T. (1979). Assessment Report on Ground Magnetics, Soil Geochemistry and Geological Mapping of the Thalia Property (Thalia 1 7 Claims). Assessment Report 7724
- Mehner, D.T. (1981a): Assessment Report on a Soil Geochemical, Ground Magnetic, VLF and Geological Mapping Survey of the Toba Property. Cominco Ltd. Assessment Report 09429.

- Mehner, D.T. (1981b): Assessment Report on a Soil and Rock Geochemical, VLF and Geological Mapping Survey on the Axe Property. Cominco Ltd. Assessment Report 09896.
- Mehner, D. T. (1982): Assessment Report on a Soil and Rock Geochemical, V.L.F., Ground Magnetometer, Diamond Drilling and Geological Survey of the Axe Property. AR No: 1088
- Mehner, D.T. (1988): Prospecting Assessment Report on the Man Claim. Assessment Report 17004.
- Mihalynuk, M.G., Logan, J.M., Diakow, L.J., Friedman, R.M., and Gabites, J. (2014): Southern Nicola Arc Project (SNAP): Preliminary results, In: Geological Fieldwork 2013, BC Ministry of Energy, Mines and Natural Gas, British Columbia Geological Survey, Paper 2014-1, pp. 29–57.
- Mihalynuk, M.G., Diakow, L.J., Logan, J.M, and Friedman, R.M., 2015. Preliminary geology of the Shrimpton Creek area (NTS 092H/15E, 16W) Southern Nicola Arc Project. In: Geological Fieldwork 2014, British Columbia Ministry of Energy and Mines, British Columbia Geological Survey Paper 2015-1, pp. 129-163.
- Mihalynuk, M.G., Diakow, L.J., Friedman, R.M., and Logan, J.M. (2016): Chronology of southern Nicola arc stratigraphy and deformation. in: Geological Fieldwork 2015, British Columbia Ministry of Energy and Mines, British Columbia Geological Survey Paper 2016-1, pp. 31-63.
- Mihalynuk, M.G., Diakow, L.J. (2020): Southern Nicola arc geology. British Columbia Ministry of Energy, Mines and Low Carbon Innovation, British Columbia Geoscience Survey Map 2020-01, 2 sheets, 1:50,000 scale map plus supplement.
- Morton, J. L. and Christoffersen, J. E. (1971): Axe Copper Property Summary of Results and Exploration Proposal for 1972.
- Murton, J.W. (2014). 2014 Assessment Report on the 2013 Diamond Drilling Program at the Man Prime Property. Assessment Report 34889.
- Nebocat, J. (1979): Geological and Geochemical Report on the HG and MS Claims. Assessment Report 07584.
- Nebocat, J. (1980): Trenching and Geological Report on the Prime and HG 1 Claims. Assessment Report 08256.
- Nielsen, P.P. and Gutrath, G.C. (1972): Geophysical Report on the Induced Polarization and Magnetometer Surveys on the properties of Belcarra Exploration Ltd and Primer Group Minerals Ltd. Assessment Report 04169.
- Parsons, J., Wade, D., Katchen, J., Nadeau-Benoit, V., Davis, M. and O'Hara, E. (2025): NI 43-101 technical report New Afton Mine British Columbia, Canada; Technical Report dated February 10, 2025, URL < https://newafton.newgold.com/about/ > [July 2025]
- Peters, L.J. (2011): Dillard Assessment Report 2011, Assessment Report 32558.
- Peters, L.J. (2012): Geophysical Report on the Dillard Property, Assessment Report 33363.
- Peters, L.J. (2014): 2013 Assessment Report on the Dillard Property, Assessment Report 34560.
- Peters, L.J. (2015a): 2014 Assessment Report including Soil Sampling, Geological Mapping, Trenching and Diamond Drilling on the Dillard Property. Assessment Report 35301.

- Peters, L.J. (2015b): 2015 Assessment Report including Prospecting on the Dillard Property. Assessment Report 35434.
- Peterson, N., Luckman N., Barresi, T., Bradford, J. (2016): 2015 Summary of Exploration on the Aspen Grove Property. AR No. 36184
- Peterson, N. and Luckman N. (2017): 2016 Summary of Exploration on the Aspen Grove Property. Assessment Report 36432
- Preto, V.A. and Koffyberg, A. (2009): Summary Report on the Man-Prime Property, for Trincan Capital Corp.
- Preto, V.A. (1979): Geology of the Nicola Group between Merritt and Princeton. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey Bullet Trenching, and Diamond Drilling on the Dillard in 69, 90p.
- Preto, V.A, Osatenko, M.J., McMillan, W.J. and Armstrong, R.L. (1979): Isotopic Dates and Strontium Isotopic Ratios for Plutonic and Volcanic Rocks in the Quesnel Trough and Nicola Belt, south-central British Columbia.
- Poliquin, M.J. and Ullrich, T.D., (2008): 2008 Report on Exploration Activities. Rock and Stream Sediment Sampling and Geochemistry, Dill#2 Property. Assessment Report 30318.
- Radvak, S. (1976): Assessment Report for Consolidated Kalco Valley Mines Ltd. Rampart Creek Property. Assessment Report 5971.
- Razique, A., and S. Harris (2018): 2017 Geological Report on the Axe Property; Report submitted to British Columbia Ministry of Energy and Mines for Assessment credit.
- Rosset, S and Maxwell G. (2013). 2012 Geochemical, Geophysical and Prospecting Report on the Axe Property. Event Number 544998. Assessment Report 33824.
- Rowe, J.D. (1989): Geochemical Report On the DILL #1 Mineral Claim. Fairfield Minerals Ltd. Assessment Report 18410.
- Sillitoe, R.H. (2010): Porphyry Copper Systems. Economic Geology, 105, 3-41.
- Sim, R., Schulte, M., Mehrfert, P., Melynk, J., He, D. Z., and Fofonow, D. (2022). Copper Mountain Mine NI 43-101 feasibility study update; Technical Report dated October 26, 2022, URL < www.sedarplus.ca > [July 2025]
- Teck Resources Ltd. (2025): Teck Announces Construction of Highland Valley Copper Mine Life Extension To Proceed URL < https://www.teck.com/news/news-releases/2025/teck-announces-construction-of-highland-valley-copper-mine-life-extension-to-proceed > [July 2025].
- Thomson, G.R. (2006): Report on 2006 diamond drilling on the Ketchan Lake Property. AR No: 28484
- Thomson, G.R. (2007): Diamond drilling Assessment Report on the Ketchan Lake Property. AR No: 29453
- Tilsley, R. (2008): Assessment Report on the Geochemical Soil Survey, Geological Mapping and Surveying on the Prime/Man Property. Assessment Report 30033.

Trenholme, L.S. (1978): Consolidated Kalco Valley Mines Ltd. Report of Assessment Report on Muf Mineral Claim. Assessment Report 6809.

Tully, D.W. (1970): Report on Diamond Drill and Geochemical Results for Pageant Mines Ltd and Primer Group Minerals Ltd. Assessment Report 02354.

Visagie, D. (1981a): Drilling Report on the MS-HG Claims. Assessment Report 09367.

Visagie, D. (1981b): Drilling Report on the Prime Claim. Assessment Report 09649.

Wynne, F.L. (1989): Assessment Report on Diamond Drilling on the Man Claims. Assessment Report 18776.

Ziebart, P. (1988). Assessment Report on the Man Claim. Princeton Area. Assessment Report 17004.

28 Certificate of Authors

28.1 Alfonso Rodriguez Certificate of Author

I, Alfonso Rodriguez, M.Sc., P.Geo., of Vancouver, BC, do hereby certify that:

- 1) I am a Senior Geologist of APEX Geoscience Ltd. ("APEX"), with a business address of 410, 800 West Pender St., Vancouver, British Columbia, Canada.
- 2) I am an Author and am responsible for Sections 1.1 to 1.6, 1.9, 2 to 11, 12.1.2, 12.2-12.4, 23 to 24, 25.1 to 25.3, 25.5, 25.6, 26 to 27, 28.1 of this Technical Report entitled: "NI 43-101 Technical Report and Mineral Resource Estimate, MPD Project, British Columbia, Canada", with an Effective Date of June 25, 2025 (the "Technical Report").
- 3) I graduated with a degree in Geology from the Santander Industrial University (UIS) in Colombia in 2005 and with a M.Sc. in Geological Sciences from the University of British Columbia in 2014. I have practiced my profession continuously since my graduation in 2005. Over the past 15 years I have supervised exploration programs specific to precious and base metal including epithermal and porphyry deposits having similar geologic characteristics to the MPD Property in Canada, Chile, and British Columbia, Canada.
- 4) I am a Professional Geologist (P.Geo.) and have been registered with the Association of Professional Engineers and Geoscientists of B.C. since 2015, and I am a 'Qualified Person' in relation to the subject matter of this Technical Report.
- 5) I visited the Property that is the subject of this Technical Report on May 5th 2022, on September 15th 2022 and more recently on June 23rd and 24th 2025 and I have conducted a review of the MPD Project data
- 6) I am independent of Kodiak, as defined by Section 1.5 of National Instrument 43-101. I have not received, nor do I expect to receive, any interest, directly or indirectly, in the Company. I am not aware of any other information or circumstance that could interfere with my judgment regarding the preparation of the Technical Report.
- 7) I have had previous involvement with the MPD Property, that is the subject of this Technical Report as disclosed in (5), including site visits, data and core procedures review in 2022.
- 8) I have read and understand National Instrument 43-101 and Form 43-101 F1 and the Report has been prepared in compliance with the instrument.
- 9) To the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated and signed this 9th	dav of	August 2025 in Vancouver.	British Columbia	. Canada.
---------------------------	--------	---------------------------	------------------	-----------

Dated and signed this 9" day of August 2025 in Vancouver, British Columbia,	Canada.
"Signed and Sealed"	
Alfonso L. Rodriguez, M.Sc., P.Geo. (EGBC #44993)	

28.2 James N. Gray Certificate of Author

I, James N. Gray, B.Sc., P.Geo., of Maple Ridge, BC, do hereby certify that:

- 1) I am a consulting geologist with Advantage Geoservices Ltd. ("Advantage"), with a business address of 12771 261 Street, Maple Ridge, British Columbia, Canada.
- 2) I am an Author and am responsible for Sections 1.8, 14, 25.4 and 28.2 of this Technical Report entitled: "NI 43-101 Technical Report and Mineral Resource Estimate, MPD Project, British Columbia, Canada", with an Effective Date of June 25, 2025 (the "Technical Report").
- 3) I am a graduate of the University of Waterloo, with a B.Sc. in Geology and have practiced my profession continuously since 1985. I have over 35 years of experience in the mineral resource estimation work at operating mines as well as base and precious metal projects in North and South America, Europe, Asia and Africa. I have been responsible for multiple resource estimates of deposits with this porphyry copper-gold style of mineralization.
- 4) I am a Professional Geologist (P.Geo.) registered with Engineers & Geoscientists British Columbia (#27022) and I am a 'Qualified Person' in relation to the sections of this Technical Report for which I am responsible.
- 5) I have not visited the Property that is the subject of this Technical Report. I have reviewed drill core and held geologic discussions with the Kodiak Copper Personnel at their field office in Merritt, British Columbia on October 17 & 18, 2024.
- 6) I am independent of Kodiak Copper, as defined by Section 1.5 of National Instrument 43-101. I have not received, nor do I expect to receive, any interest, directly or indirectly, in the Company. I am not aware of any other information or circumstance that could interfere with my judgment regarding the preparation of the Technical Report.
- 7) I have had no previous involvement with the MPD Property, that is the subject of this Technical Report.
- 8) I have read and understand National Instrument 43-101 and Form 43-101 F1 and the Report has been prepared in compliance with the instrument.
- 9) To the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated and signed this 9th day of August 2025 in Maple Ridge, British Columbia, Canada.

James N. Gray, B.Sc., P.Geo. (EGBC #27022)	
Advantage Geoservices Ltd.	

"Signed and Sealed"

28.3 Shane Tad Crowie Certificate of Author

I, Shane Tad Crowie, BASc., P.Eng., of Parksville, BC do hereby certify that:

- 1) I am currently employed as a Senior Metallurgist with JDS Energy and Mining with an office at Suite 900 999 West Hastings Street, Vancouver, British Columbia, V6C 2W2.
- 2) I am the Author and am responsible for Sections 1.7, 13 and 28.3 of this Technical Report entitled: "Technical Report and Mineral Resource Estimate, MPD Project, with an Effective Date of June 25, 2024 (the "Technical Report").
- 3) I am a graduate of the University of British Columbia in 2001, with a B.A.Sc. in Mining and Mineral Process Engineering. I have practiced my profession continuously since 2001. I have been involved with various mining projects and studies; where I have performed, technical, operations and management positions at mines in Canada. I have been responsible for recovery optimization projects, capital improvement projects, budgeting, planning and pilot plant operations. I also have been responsible for writing technical reports, managing metallurgical testwork, and performing due diligence audits on mines and development properties.
- 4) I am a Professional Engineer (P. Eng) registered with the Association of Professional Engineers and Geoscientists of B.C. (No. 34052) and I am a 'Qualified Person' in relation to the subject matter of this Technical Report.
- 5) I have not visited the Property that is the subject of this Technical Report.
- 6) I am independent of Kodiak Copper Corp., as defined by Section 1.5 of National Instrument 43-101. I have not received, nor do I expect to receive, any interest, directly or indirectly, in the Company. I am not aware of any other information or circumstance that could interfere with my judgment regarding the preparation of the Technical Report.
- 7) I have had no previous involvement with the MPD Property, that is the subject of this Technical Report.
- 8) I have read and understand National Instrument 43-101 and Form 43-101 F1 and the Report has been prepared in compliance with the instrument.
- 9) To the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated and Signed this 9th day of August, 2025 in Parksville, BC, Canada.

"Signed and Sealed"
Signature of Qualified Person
Shane Tad Crowie, BASc., P.Eng. (EGBC #34052)